Search
Search Results
-
Interactive web portals in mathematics
347-361Views:184Many of the recent problems in higher education (less contact seminars, the heterogeneity and the increasing number of our students) call for new instructional methods. At University of Szeged we have developed a mathematical web portal which can offer a solution for such problems among the changing circumstances. This freely available, easy-to-use web-surface supports interactive mathematical problem-solving and student self assessment. Our computer program cooperates with a lot of free software (computer algebra systems, formula parsers, converters, word processors). WebMathematics Interactive has been available for the public since June 2002 on its web page http://wmi.math.u-szeged.hu. -
Conversion between different symbolic representations of rational numbers among 9th-grade students
29-45Views:186Our research involved nearly 800 ninth-grade secondary school students (aged 14-15) during the first weeks of the 2023/2024 school year. Less than 40% of students solved the text problems related to common fractions and percentages correctly. In terms of student solutions, pupils showed a higher success rate when the text of the problem contained common fractions, and the solution had to be given as a percentage. In this case, the success rate of switching between different symbolic representations of rational numbers (common fraction, percentage) was also higher. Observation of the methods used to solve also suggests that the majority of students are not flexible enough when it comes to switching between different representations.
Subject Classification: 97F80, 97D70
-
Strategies used in solving proportion problems among seventh-grade students
101-127Views:22In the 2023/2024 school year, 146 seventh-grade Hungarian students (aged 12-13) participated in our classroom experiment on solving proportion problems. At the beginning and the end of the teaching phase, both the experimental and the control groups solved a test. Regarding the answers of the students, in the pre- and post-test mostly consisting of word problems, we examined the success of solving the problems, as well as the solution strategies. For this, we used the strategies of proportional thinking that already exist in the literature of mathematical didactics. We intended to answer the following questions: To what extent and in which ways do the different types of problems and texts influence the solution strategies chosen by the students? How successfully do seventh-grade students solve proportion problems?
Subject Classification: 97D50, 97F80
-
Experiences in the education of mathematics during the digital curriculum from the perspective of high school students
111-128Views:270Due to the COVID-19 epidemic, Hungarian schools had to switch to a digital curriculum for an extended period between 2019 and 2021. In this article, we report on the experiences regarding the education of mathematics during the digital curriculum in the light of the reinstated on-site education, all through the eyes of high school students. Distance education brought pedagogical renewal to the lives of many groups. Students were asked about the positives and negatives of this situation.
Subject Classification: 97C90
-
Dynamic methods in teaching geometry at different levels
1-13Views:107In this paper we summarize and illustrate our experiences on DGS-aided teaching geometry of the courses "Computer in mathematics" and "Mathematical software" held for students at Juhász Gyula Teacher Training College of University of Szeged. Furthermore, we show examples from our grammar school experiences too. The figures in this paper were made by using Cinderella ([19]) and Euklides ([21]). -
Exploring the basic concepts of Calculus through a case study on motion in gravitational space
111-132Views:184In universities, the Calculus course presents significant challenges year after year. In this article, we will demonstrate how to use methods of Realistic Mathematics Education (RME) to introduce the concepts of limits, differentiation, and integration based on high school kinematics and dynamics knowledge. All mathematical concepts are coherently built upon experiences, experiments, and fundamental dynamics knowledge related to motion in a gravitational field. With the help of worksheets created using GeoGebra or Microsoft Excel, students can conduct digital experiments and later independently visualize and relate abstract concepts to practical applications, thereby facilitating their understanding.
Subject Classification: 97D40, 97I40, 97M50
-
Sage and scribe – asymmetrical pair work that can easily fit into any mathematics lesson, yet still have cooperative benefits
133-164Views:498This article uses a case study experiment to learn the characteristics of a pair work, called the sage and scribe method (Kagan, 2008). We also wished to explore the positive and negative effects of the systematic application of this single cooperative element without any other structural changes during the lessons. In the case study experiment, we asked two teachers, accustomed to traditional frontal teaching methods, to substitute individual work tasks in their standard lesson plans with the sage and scribe method. Our experiments indicate that this method wastes insignificant time, requires little extra effort on the part of the teacher, yet has many of the positive effects of cooperative methods: in our experiments, students received immediate feedback, corrected each other’s mistakes, learned from each other in meaningful discussions and engaged in collaborative reasoning to address emerging problems.
Subject Classification: 97D40
-
Report on the Conference of History of Mathematics and Teaching of Mathematics: research in History of Mathematics and Teaching of Mathematics : University of Szeged 19-23 May, 2010, Szeged, Hungary
319-338Views:171The 6th Conference on the History of Mathematics and Teaching of Mathematics was held in Szeged (Hungary). Its motto reads as:
Mathematics – a common language for Europe for thousand years.
The aim of the conference was to present aspects of History of Mathematics, including its impact on Teaching of Mathematics, to provide a forum to meet each other, and to give an opportunity for young researchers to present their results in these fields. University colleagues, students, graduate students and other researchers were invited. The programme of the Conference included talks and posters. The abstracts of the lectures and the posters are presented in this report. There were 24 presentations and poster lectures. -
Decomposition of triangles into isosceles triangles I: let the students ask bravely
163-184Views:111We report about working up an open geometric problem as a mathematical research with pupils of a mathematics camp. This paper shows the didactic aims and the methods we worked with, the didactic results. The second part of this paper gives a general solution of the problem, using pure mathematics and a computer programme. -
Decomposition of triangles into isosceles triangles II: complete solution of the problem by using a computer
275-300Views:149We solve an open decomposition problem in elementary geometry using pure mathematics and a computer programme, utilizing a computer algebra system. -
Group Work at High School According to the Method of Tamás Varga
167-176Views:178The aim of our research is to develop students’ logical thinking. For this reason, Hungarian mathematics teachers need to be encouraged to try new methods which induce greater student involvement. Research all over the world prove that self-instruction or self-verbalizing has high effect on the learning process. This was one of the key elements of Tamás Varga’s experiment in high school. In our classroom experiments we are using a special cooperative method from Kagan among 14-18 years old students, called Sage and Scribe structure. We are looking for the answers to the following question: Does this method make mathematics lessons more enjoyable and more comfortable for students? Furthermore, we assume this structure could open the gate toward other collaborative and cooperative teaching technics.
Subject Classification: 97D40
-
A proposal for an IOI Syllabus
193-216Views:172The International Olympiad in Informatics (IOI) is the premier competition in computing science for secondary education. The competition problems are algorithmic in nature, but the IOI Regulations do not clearly define the scope of the competition. The international olympiads in physics, chemistry, and biology do have an official syllabus, whereas the International Mathematical Olympiad has made the deliberate decision not to have an official syllabus. We argue that the benefits of having an official IOI Syllabus outweigh the disadvantages. Guided by a set of general principles we present a proposal for an IOI Syllabus, divided into four main areas: mathematics, computing science, software engineering, and computer literacy. -
An e-learning environment for elementary analysis: combining computer algebra, graphics and automated reasoning
13-34Views:126CreaComp is a project at the University of Linz, which aims at producing computer-supported interactive learning units for several mathematical topics at introductory university level. The units are available as Mathematica notebooks. For student experimentation we provide computational, graphical and reasoning tools as well. This paper focuses on the elementary analysis units.
The computational and graphical tools of the CreaComp learning environment facilitate the exploration of new mathematical objects and their properties (e.g., boundedness, continuity, limits of real valued functions). Using the provided tools students should be able to collect empirical data systematically and come up with conjectures. A CreaComp component allows the formulation of precise conjectures and the investigatation of their validity. The Theorema system, which has been integrated into the CreaComp learning environment, provides full predicate logic with a user-friendly twodimensional syntax and a couple of automated reasoners that produce proofs in an easy-to-read and natural presentation. We demonstrate the learning situations and the provided tools through several examples. -
How do secondary school students from the Kurdistan Region of Iraq understand the concept of function?
221-244Views:260The study investigates secondary school students' understanding of the concept of function. The paper focuses on three main aspects: students' ability to define the concept of function; students' ability to recognize different representations of function; and students' ability to convert between different representations. A test was developed to assess the three main constructs of the study and administered to 342 students in secondary schools in the Kurdistan Region of Iraq. According to the results, students have diffculties in recognizing different representations of function and conversion between them. Connections between different parts of the test may provide hints on educational challenges of how to appropriately teach functions.
Subject Classification: 26Bxx, 97D60
-
Brute force on 10 letters
183-193Views:124We deal with two problems in the set of 10-character-long strings. Both problems can be solved by slightly different methods, but our approach for each is brute force. As we point out, there can be differences in effectivity even in different brute force algorithms. As an additional result, we answer an open question of Raymond Smullyan's. -
Béla Kerékjártó: (a biographical sketch)
231-263Views:72Kerékjártó published more than 70 scientific papers mainly in the field of topology. He achieved his most important results in the classical transformation topology and in the theoretical research of the continuous groups. He was the author of three books: Vorlesungen über Topologie; Euclidean geometry; Study on the projective geometry. -
The first clear distinction between the heuristic conjecture and the deductive proof in the ancient mathematics
397-406Views:61The mathematics of the ancient river-valley cultures was purely empirical, while the classical Greek mathematics was entirely deductive without any written sign of the heuristic arguments. In the forthcoming Hellenistic period there were significant changes. One of them is that in spite of the rigorous (deductive) proofs some heuristic arguments appeared in separate treatises. We show a nice example due to Archimedes.
"We have learned from the very pioneers of this science not to have regard to mere plausible imaginings when it is a question of the reasonings to be included in our geometrical doctrine." – Proclus -
Heads or Tails gambling — what can be learned about probability?
15-41Views:94During the teaching of probability theory, a problem may appear whose solution requires the use of methods that are unfamiliar to secondary school students. In this paper, examples of methods that can resolve this difficulties are demonstrated, which could in future allow school students to tackle and solve a wide variety of problems involving probability. -
Square root in secondary school
59-72Views:209Although in Hungary, for decades, the calculation method of the square root of a real number is not in the mathematics curriculum, many of the taught concepts and procedures can be carried out using different square root finding methods. These provide an opportunity for students in secondary school to practice and deepen understand the compulsory curriculum. This article presents seven square-root- nding methods, currently teachable in secondary schools.
Subject Classification: A33, A34, F53, F54
-
Transition from arithmetic to algebra in primary school education
225-248Views:152The main aim of this paper is to report a study that explores the thinking strategies and the most frequent errors of Hungarian grade 5-8 students in solving some problems involving arithmetical first-degree equations. The present study also aims at identifying the main arithmetical strategies attempted to solve a problem that can be solved algebraically. The analysis focuses on the shifts from arithmetic computations to algebraic thinking and procedures. Our second aim was to identify the main difficulties which students face when they have to deal with mathematical word problems. The errors made by students were categorized by stages in the problem solving process. The students' written works were analyzed seeking for patterns and regularities concerning both of the methods used by the students and the errors which occured in the problem solving process. In this paper, three prominent error types and their causes are discussed. -
Heuristic arguments and rigorous proofs in secondary school education
167-184Views:119In this paper we are going to discuss some possible applications of the mechanical method, especially the lever principle, in order to formulate heuristic conjectures related to the volume of three-dimensional solids. In the secondary school educational processes the heuristic arguments are no less important than the rigorous mathematical proofs. Between the ancient Greek mathematicians Archimedes was the first who made heuristic conjectures with the methods of Mechanics and proved them with the rigorous rules of Mathematics, in a period, when the methods of integration were not known. For a present day mathematician (or a secondary school mathematics teacher) the tools of the definite integral calculus are available in order to calculate the volume of three dimensional bodies, such as paraboloids, ellipsoids, segments of a sphere or segments of an ellipsoid. But in the secondary school educational process, it is also interesting to make heuristic conjectures by the use of the Archimedean method. It can be understood easily, but it is beyond the normal secondary school curriculum, so we recommend it only to the most talented students or to the secondary schools with advanced mathematical teaching programme. -
Maximum and minimum problems in secondary school education
81-98Views:130The aim of this paper is to offer some possible ways of solving extreme value problems by elementary methods with which the generally available method of differential calculus can be avoided. We line up some problems which can be solved by the usage of these elementary methods in secondary school education. The importance of the extremum problems is ignored in the regular curriculum; however they are in the main stream of competition problems – therefore they are useful tools in the selection and development of talented students. The extremum problem-solving by elementary methods means the replacement of the methods of differential calculus (which are quite stereotyped) by the elementary methods collected from different fields of Mathematics, such as elementary inequalities between geometric, arithmetic and square means, the codomain of the quadratic and trigonometric functions, etc. In the first part we show some patterns that students can imitate in solving similar problems. These patterns could also provide some ideas for Hungarian teachers on how to introduce this topic in their practice. In the second part we discuss the results of a survey carried out in two secondary schools and we formulate our conclusion concerning the improvement of students' performance in solving these kind of problems. -
An idea which yields a lot of elementary inequalities
61-72Views:96The aim of the article is to show how studies in higher mathematics can be applied in everyday teaching practice to construct new problems for their pupils. In higher mathematics it is known that the set of real numbers with the addition and multiplication (shortly: (R,+,x)) is an ordered field. Considering a strictly monotonic increasing and continuous function σ with domain ...
By this idea, using different kinds of functions σ we show a lot of different elementary inequalities. -
WMI2: interactive mathematics on the web
393-405Views:101After 5 years of experiments and feedback we decided to continue the software development on WebMathematics Interactive, a web-based e-learning tool, rewriting it from scratch. The demonstration version of WebMathematics Interactive 2 (WMI2) has been shown to the expert audience on the CADGME conference. In this article we summarize the development goals and results. -
On the past of a famous theorem: the predecessors of a theorem of Pythagoras
255-267Views:129The well-known Theorem of Pythagoras asserts a relation among the sides of any right-angled triangle. It can be found any secondary school textbook. An interesting question whether this result due to the Pythagoreans from the VIth century BC, or it was known in earlier civilizations. The first answer is a vague yes. According to the legends the Egyptian rope-stretchers used a triangle with sides 3,4,5 units to create right angle. But are there real evidences that this result was known earlier? We will argue that in almost all river-valley civilizations it was known and used.