Articles

Sage and scribe – asymmetrical pair work that can easily fit into any mathematics lesson, yet still have cooperative benefits

Published:
2024-12-20
Authors
View
Keywords
License

Copyright (c) 2024 Eszter Kovács-Kószó, Viktória Czakó, József Kosztolányi

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Kovács-Kószó, E., Czakó, V., & Kosztolányi, J. (2024). Sage and scribe – asymmetrical pair work that can easily fit into any mathematics lesson, yet still have cooperative benefits. Teaching Mathematics and Computer Science, 22(2), 133-164. https://doi.org/10.5485/TMCS.2024.14212
Abstract

This article uses a case study experiment to learn the characteristics of a pair work, called the sage and scribe method (Kagan, 2008). We also wished to explore the positive and negative effects of the systematic application of this single cooperative element without any other structural changes during the lessons. In the case study experiment, we asked two teachers, accustomed to traditional frontal teaching methods, to substitute individual work tasks in their standard lesson plans with the sage and scribe method. Our experiments indicate that this method wastes insignificant time, requires little extra effort on the part of the teacher, yet has many of the positive effects of cooperative methods: in our experiments, students received immediate feedback, corrected each other’s mistakes, learned from each other in meaningful discussions and engaged in collaborative reasoning to address emerging problems.

Subject Classification: 97D40

References
  1. Alrø, H., & Skovsmose, O. (2003). Dialogue and learning in mathematics education, Mathematics Education Library, Volume 29. Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48016-6
  2. Capar, G., & Tarim, K. (2015). Efficacy of the Cooperative Learning Method on mathematics achievement and attitude: A meta-analysis research. Educational Sciences: Theory & Practice, 15 (2), 553–559. https://doi.org/10.12738/estp.2015.2.2098
  3. Dekker, R., & Elshout-Mohr, M. (1998). A process model for interaction and mathematical level raising, Educational Sciences: Theory & Practice, 35 (3), 303–314.
  4. Graesser, A. C., Dowell, N., Hampton, A. J., Lippert, A. M., Li, H., & Shaffer, D. W. (2018). Building intelligent conversational tutors and mentors for team collaborative problem solving: Guidance from the 2015 Program for International Student Assessment. In Building Intelligent Tutoring Systems for Teams (pp. 173–211). Emerald Publishing Limited. https://doi.org/10.1108/S1534-085620180000019012
  5. Hodgen, J., Foster, C., Marks, R., & Brown, M. (2018). Evidence for review of mathematics teaching: improving mathematics in Key Stages two and three: Evidence review. Education Endowment Foundation.
  6. Johnson, D. W., & Johnson, R. T. (1999). Learning together and alone: Cooperative, competitive, and individualistic learning (5th ed.). Allyn & Bacon.
  7. Johnson, D. W., & Johnson, R. T. (2009). An educational psychology success story: Social interdependence theory and cooperative learning. Educational Researcher, 38 (5), 365–379.
  8. Johnson, R. T., & Johnson, D. W. (1994). An overview of cooperative learning. In A. V. J. Thousand, & A. Nevin (Eds.), Creativity and collaborative learning. Brookers Press.
  9. Kagan, S. (2001). Kooperatív tanulás (1st ed.). Önkonet.
  10. Kagan, S., & Kagan, M. (2009). Kagan cooperative learning. Kagan.
  11. Kagan, S. (n.d.). Kagan It’s all about engagement. KaganOnline. https://www.kaganonline.com/
  12. Kagan, S. (1999). Cooperative learning: Seventeen pros and seventeen cons plus ten tips for success. Kagan Online Magazine, Winter 1999. Kagan Publishing. https://www.kaganonline.com/free_articles/dr_spencer_kagan/259/Cooperative-Learning-Seventeen-Pros-and-Seventeen-Cons-Plus-Ten-Tips-for-Success
  13. Kagan, S. (2008). The instructional revolution. KaganOnline. https://www.kaganonline.com/free_articles/dr_spencer_kagan/ASK39-2.php#:~:text=URL%3Ahttps%3A%2F%2Fwww.kaganonline.com%2Ffreearticles%2Fdr_spencer_kagan%2FASK39
  14. Kagan, S. (2014). Effect size reveals the impact of Kagan structures and cooperative learning. Kagan Online Magazine, Winter 2014. Kagan Publishing. https://www.kaganonline.com/free_articles/dr_spencer_kagan/384/Effect-Size-Reveals-the-Impact-of-Kagan-Structures-and-Cooperative-Learning
  15. Kagan, S., & Kagan, M. (2024). Kagan cooperative learning: Frequent questions. KaganOnline. https://www.kaganonline.com/catalog/BKCLW_Chapter_1/
  16. Kovács-Kószó, E. (2024). Kooperatív módszerek a matematikaórákon – vizsgálatok egy speciális pármunka hatékonyságával kapcsolatban [Doctoral thesis]. University of Szeged.
  17. Kovács-Kószó, E., & Kosztolányi, J. (2020). Group work at high school according to the method of Tamás Varga. Teaching Mathematics and Computer Science, 18 (3), 167–176. https://doi.org/10.5485/TMCS.2020.0506
  18. K. Nagy, E. (2015). KIP Könyv I-II. Miskolci Egyetemi Kiadó.
  19. Kyndt, E., Raes, E., Lismont, B., Timmers, F., Cascallar, E., & Dochy, F. (2013). A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educational Research Review, 10, 133–149. https://doi.org/10.1016/j.edurev.2013.02.002
  20. Leatham, K. R., Peterson, B. E., Stockero, S. L., & Van Zoest, L. R. (2015). Conceptualizing mathematically significant pedagogical opportunities to build on student thinking. Journal for Research in Mathematics Education, 46 (1), 88–124. https://doi.org/10.5951/jresematheduc.46.1.0088
  21. Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Sage Publications.
  22. Nemirovsky, R., Rosebery, A. S., Solomon, J., & Warren, B. (Eds.) (2005). Everyday matters in science and mathematics: Studies of complex classroom events. Lawrence Erlbaum.
  23. Pásztor-Kovács, A. (2019). A kollaboráció hatékonyságának feltételei és mérési lehetőségei. Iskolakultúra, 29 (9), 3–20. https://doi.org/10.14232/ISKKULT.2019.9.3
  24. Sari, P. P., Budiyono, & Slamet, I. (2018). Cooperative learning model with high order thinking skills questions: an understanding on geometry. Journal of Physics: Conference Series, 1013, 012123. https://doi.org/10.1088/1742-6596/1013/1/012123
  25. Sfard, A. (2015). Why all this talk about talking classrooms? Theorizing the relation between talking and learning. In L. B. Resnick, C. S. C. Asterhan, & S. N. Clarke (Eds.), Socializing intelligence through academic talk and dialogue (pp. 245–254). American Educational Research Association. https://doi.org/10.3102/978-0-935302-43-1 19
  26. Slavin, R. E. (1995). Cooperative learning: Theory, research, and practice. Allyn & Bacon.
  27. Slavin, R. E., Lake, C., & Groff, C. (2009). Effective programs in middle and high school mathematics: A best-evidence synthesis. Review of Educational Research, 79 (2), 839–911.
  28. Sulinavigátor (2023). Rangsoroló. Sulinavigátor. https://sulinavigator.hu/rangsorolo.php
  29. Taljaard, J. (2016). A review of multi-sensory technologies in a Science, Technology, Engineering, Arts and Mathematics (STEAM) classroom. Journal of Learning Design, 9 (2), 46–55. https://doi.org/10.5204/jld.v9i2.274
  30. Tatsis, K., & Koleza, E. (2006). The effect of students’ roles on the establishment of shared knowledge during collaborative problem solving: a case study from the field of mathematics. Social Psychology of Education, 9 (4), 443–460. https://doi.org/doi:10.1007/s11218-006-9005-8
  31. Tatsis, K., & Dekker, R. (2010). Combining approaches for the analysis of collaborative mathematics learning. For the Learning of Mathematics, 30 (2), 18–21. https://doi.org/10.2307/20749444
  32. Wood, M. B., & Kalinec, C. A. (2012). Student talk and opportunities for mathematical learning in small group interactions. International Journal of Educational Research, 51–52, 109–127. https://doi.org/doi:10.1016/j.ijer.2011.12.008