Articles

Exploring the basic concepts of Calculus through a case study on motion in gravitational space

Published:
2024-12-20
Authors
View
Keywords
License

Copyright (c) 2024 Miklós Tekeli, János Karsai, Katalin Kopasz

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Tekeli, M., Karsai, J., & Kopasz, K. (2024). Exploring the basic concepts of Calculus through a case study on motion in gravitational space. Teaching Mathematics and Computer Science, 22(2), 111-132. https://doi.org/10.5485/TMCS.2024.14168
Abstract

In universities, the Calculus course presents significant challenges year after year. In this article, we will demonstrate how to use methods of Realistic Mathematics Education (RME) to introduce the concepts of limits, differentiation, and integration based on high school kinematics and dynamics knowledge. All mathematical concepts are coherently built upon experiences, experiments, and fundamental dynamics knowledge related to motion in a gravitational field. With the help of worksheets created using GeoGebra or Microsoft Excel, students can conduct digital experiments and later independently visualize and relate abstract concepts to practical applications, thereby facilitating their understanding.

Subject Classification: 97D40, 97I40, 97M50

References
  1. Azhikannickal, E. (2019). Sports, smartphones, and simulation as an engaging method to teach projectile motion incorporating air resistance. The Physics Teacher, 57 (5), 308–311.
  2. Barbetta, P. M., & Skaruppa, C. L. (1995). Looking for a way to improve your behavior analysis lectures? Try guided notes. The Behavior Analyst, 18 (1), 155–160.
  3. Budó, Á., & Pócza, J. (1978). Kísérleti fizika I [Experimental Physics I] (pp. 193, 275). Tankönyvkiadó Vállalat.
  4. Csajági, S., Fülöp, F., Póda, L., Simon, P., & Urbán, J. (2021). Fizika 9-10 [Physics 9-10 textbook] (pp. 23–28). Oktatási Hivatal.
  5. Da, N. T. (2022). Designing a teaching model based on the Realistic Mathematics Education (RME) approach and its application in teaching calculus. Journal of Mathematics and Science Teacher, 2 (1), em006, pp. 10.
  6. Da, N. T. (2023). The effect of realistic mathematics education on the problemsolving competency of high school students through learning calculus topics. Contemporary Mathematics and Science Education, 4 (1), ep23013, pp. 11.
  7. Forczek, E., & Karsai, J. (2000). Computer visualization in the mathematics classroom. In Proceedings of International Conference on Mathematics / Science Education and Technology 2000 (p. 427). Association for the Advancement of Computing in Education (AACE).
  8. Excel teaching aids [1], Approximation of projectile motion without drag. Retrieved 1 February, 2024. https://n9.cl/no5ge
  9. Excel teaching aids [2], Approximation of projectile motion with drag. Retrieved 1 February, 2024. https://n9.cl/1l2n1
  10. Excel teaching aids [3], Approximation of projectile motion in wind. Retrieved 1 February, 2024. https://n9.cl/p5u1v
  11. Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Kluwer Academic Publishers.
  12. GeoGebra teaching aids [1], Limiting velocity. Retrieved 1 February, 2024. https://www.geogebra.org/m/dgeq4wbm
  13. GeoGebra teaching aids [2], Instantaneous velocity. Retrieved 1 February, 2024. https://www.geogebra.org/m/hp4tvagn
  14. GeoGebra teaching aids [3], Instantaneous velocity, left and right limits. Retrieved 1 February, 2024. https://www.geogebra.org/m/drpprf3x
  15. GeoGebra teaching aids [4], Graphical interpretation of derivatives. Retrieved 1 February, 2024. https://www.geogebra.org/m/exhzqayw
  16. GeoGebra teaching aids [5], The trajectory approximation. Retrieved 1 February, 2024. https://www.geogebra.org/m/uugxqdpb
  17. GeoGebra teaching aids [6], Graphical interpretation of Newton–Leibniz theorem. Retrieved 1 February, 2024. https://www.geogebra.org/m/y7dzqrax
  18. GeoGebra teaching aids [7], Newton’s method. Retrieved 1 February, 2024. https://www.geogebra.org/m/npqbnhkj
  19. GeoGebra teaching aids [8], Air resistance analysis using tangent field. Retrieved 1 February, 2024. https://www.geogebra.org/m/vnq5jzdt
  20. Kántor, S. (2021). Fejezetek a matematikai analízis tanításának történetéből [Chapters from the history of the teaching of mathematical analysis]. Érintő, 2021 (21). https://ematlap.hu/tanora-szakkor-2021-6/1115-kantor-tunde-az-analizis-tanitasa
  21. Karsai, J., Takaci, D., Takaci, A., & Radovanovic, J. (2008) Visualization of the derivative of functions with the help of Mathematica 6. In: Proceedings of the 12th Serbian Mathematical Congress (Novi Sad, September 2008) (pp. 151–158). University of Novi Sad, Mathematical Society of Serbia.
  22. Karsai, J., Rácz, P. É. V., Schwenk, A., & Kalus, N. (2006). Teaching computeraided mathematical modelling for applied fields. In 2nd International Conference on Interdisciplinarity in Education (Athens, Greece) (pp. 2009–2013). National Technical University of Athens.
  23. Karsai, J. (2003). Models of impulsive phenomena: Experiences with writing an interactive textbook. Teaching Mathematics and Computer Science, 1 (2), 333–345.
  24. Karsai, J. (2021). Mathematics for life science students, electronic courseware. Retrieved 1 February, 2024. https://n9.cl/pguyqv
  25. NASA, Glenn Research Center. Forces on Falling Object. Retrieved 1 February, 2024. https://www.grc.nasa.gov/www/k-12/VirtualAero/BottleRocket/airplane/falling.html
  26. Next Generation Science (2023). Terminal Velocity and Air Resistance [Skydiving analysis, Video]. YouTube. Retrieved 1 February, 2024. https://www.youtube.com/watch?v=ElpqPZd1RJU
  27. Radnóti, K., & Nagy, M. (2014). A matematika és a fizika kapcsolata [The relationship between mathematics and physics]. Iskolakultúra, 24 (10), 102–118.
  28. Rátz, L. (1909). A függvények és az infinitézimális számítás elemeinek tanítása a középiskolában [Teaching the elements of functions and infinitesimal Calculus in our secondary schools]. In A középiskolai matematikai tanítás reformja (pp. 142–155). Franklin-Társulat.
  29. Santos-Trigo, M. (2019). Mathematical problem solving and the use of digital technologies. In Mathematical problem solving: Current themes, trends, and research, ICME-13 Monographs (pp. 63–89). Springer.
  30. Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151–169.
  31. Tall, D. (1991). Intuition and rigour: the role of visualization in the Calculus. In W. Zimmermann, & S. Cunningham (Eds.), Visualization in Teaching and Learning Mathematics: A Project (M.A.A. Notes, No. 19) (pp. 105–119). Mathematical Association of America.
  32. Tamam, B., & Dasari, D. (2021). The use of Geogebra software in teaching mathematics. Journal of Physics: Conference Series, 1882, 012042.
  33. Vale, I., & Barbosa, A. (2017). The Importance of Seeing in Mathematics Communication. JETEN – Journal of the European Teacher Network, 12, 49–63.
  34. WolframAlpha. Retrieved 1 February, 2024. https://www.wolframalpha.com/
  35. Zengin, Y., Furkan, H., & Kutluca, T. (2012). The effect of dynamic mathematics software geogebra on student achievement in teaching of trigonometry. Procedia – Social and Behavioral Sciences, 31, 183–187.
Database Logos

Keywords