Search
Search Results
-
Report of conference XXXVIII. National Conference on Teaching Mathematics, Physics and Computer Sciences: August 25-27, 2014 Pécs, Hungary
281-303Views:89The XXXVIII. National Conference on Teaching Mathematics, Physics and Computer Sciences (MAFIOK) was held in Pécs, Hungary between 25 and 27 August, 2014 at the Pollack Mihály Faculty of Engineering and Information Technology. It was organized by the Engineering Mathematics Department. The 65 participants – including 4 invited lecturers and 53 lecturers – came from 2 countries and represented 14 institutions of higher education. -
Report of Conference XXXIX. National Conference on Teaching Mathematics, Physics and Computer Science-August 24-26, 2015 Kaposvár, Hungary
309-331Views:70The XXXIX. National Conference on Teaching Mathematics, Physics and Computer Sciences (MAFIOK) was held in Kaposvár, Hungary between 24 and 26 August, 2015 at the Faculty of Economic Sciences of Kaposvár University. It was organized by the Department of Mathematics and Physics. The 67 participants – including 5 invited lecturers and 54 lecturers – came from 5 countries and represented 16 institutions of higher education. -
Teaching meaningful mathematics with the Computer Algebra System MAXIMA using the example of inequalities
53-65Views:125The paper was originally motivated by the request to accentuate the meaningful contribution of inequalities in Mathematics Education. Additionally nationwide approved competences such as estimating come to the fore when organizing mathematical contents along some central Big Ideas. Not least the integration of computers enriches the reasonable discussion of inequalities by modern well accepted methodological principles. The freeware MAXIMA is used as Computer Algebra System (CAS) representatively. -
Correction to Mneimneh (2019): "Simple variations on the Tower of Hanoi: A study of recurrences and proofs by induction” Teaching Mathematics and Computer Science 17 (2019), 131-158.
109Views:125In the article “Simple variations on the Tower of Hanoi: A study of recurrences and proofs by induction” by Saad Mneimneh (Teaching Mathematics and Computer Science, 2019, 17(2), 131–158. https://doi.org/10.5485/TMCS.2019.0459), there was an error in Table 1 (p. 155), and consequently, the first paragraph of Section 8 (p. 154) also needed correction.
-
The influence of computer on examining trigonometric functions
111-123Views:103In this paper the influence of computer on examining trigonometric functions was analyzed throughout the results questionnaire. The students, as usual, had to examine two trigonometric functions, both were given with the appropriate instructions. Three groups were tested. Two of those three groups were prepared with the help of computer and the third one was taught without computer. From the analysis of the questionnaire it follows that the computer has a great influence on understanding of the connections between the graph and very complex calculations. -
Zbigniew Michalewicz - Matthew Michalewicz: Puzzle Based Learning: An introduction to critical thinking, mathematics, and problem solving. Hybrid Publishers Melbourne 2008 (Book review)
415-420Views:203Based on their experiences with engineering, mathematics, computer science, business students concerning the puzzle based learning in different countries the authors summarize their main problem solving teaching ideas. With help of interesting, motivating, nice problems they analyze the main mathematical principles and problem types. The review gives an overview about the main ideas, results of an interesting book. -
Analyse von Lösungswegen und Erweiterungsmöglichkeiten eines Problems für die Klassen 7–11
231-249Views:91Making several solutions for a problem i.e. the generalization, or the extension of a problem is common in the Hungarian mathematics education.
But the analysis of a problem is unusual where the connection between the mathematical content of the task and of its different formulations is examined, solutions from different fields of mathematics are presented regarding the knowledge of different age groups, the problem is generalized in different directions, and several tools (traditional and electronic) for solutions and generalizations are presented.
This kind of problem analysis makes it viable that during the solution/elaboration several kinds of mathematical knowledge and activities are recalled and connected, facilitating their use inside and outside of mathematics.
However, an analysis like this is not unfamiliar to the traditions of the Hungarian problem solving education – because it also aims at elaborating a problem – but from several points of view.
In this study, a geometric task is analysed in such a way. -
Experiences using CAS and multimedia int teaching vectorcalculus
363-382Views:70The development of informatics brings new opportunities that need reevaluating of the teaching concepts. For this reason we have performed a comprehensive educational development for engineering students. Our main goals were to work out a new educational strategy, to develop the needed package of the subject material, to introduce the strategy in the practice, to analyze and evaluate the experiences. In the developed and adapted teaching-learning strategy the teacher is the organizer, designer and the manager of the process. In this paper we summarize the concepts, the results and experiences of the 3-years-long development. -
A new approach for explaining Rhind's Recto – and its utility in teaching
337-355Views:96The Recto is a table in the Rhind Mathematical Papyrus (RMP) of ancient Egypt containing the unit fraction decompositions of fractions 2/n (3 ≤ n ≤ 101, n odd). To the question how (and why) the decompositions were made, there exists no generally accepted answer. The fact that in some other sources of Egyptian mathematics decompositions different from those in Recto exist makes the problem more difficult.
Researchers normally try to find the answer in some formulas by which the entries of the table were calculated [see e.g. 1, 42]. We are convinced that the correct answer is not hidden in formulas but in the characteristics of Egyptian mathematics namely those of fraction and division concepts. To study them is important not only from historical point of view but also from methodological one: how to develop fraction concept and how to make division easier. -
Correction to Gofen (2013): "Powers which commute or associate as solutions of ODEs?", Teaching Mathematics and Computer Science 11 (2013), 241-254.
245Views:115In the article "Powers which commute or associate as solutions of ODEs?" by Alexander Gofen (Teaching Mathematics and Computer Science, 2013, 11(2), 241–254. https://doi.org/10.5485/TMCS.2013.0347), there was an error in Conjecture 1 (p. 250), and consequently, in the References (p. 254).
-
Approximated Poncelet configurations
163-176Views:123In this short note we present the approximate construction of closed Poncelet configurations using the simulation of a mathematical pendulum. Although the idea goes back to the work of Jacobi ([17]), only the use of modern computer technologies assures the success of the construction. We present also some remarks on using such problems in project based university courses and we present a Matlab program able to produce animated Poncelet configurations with given period. In the same spirit we construct Steiner configurations and we give a few teaching oriented remarks on the Poncelet grid theorem. -
Radio Frequency Identification from the viewpoint of students of computer science
241-250Views:94This paper aims at creating the right pedagogical attitudes in term of teaching a new technology, Radio Frequency Identification (RFID) by evaluating the social acceptance of this new method. Survey of future teachers, students of teacher master studies and students from informatics oriented secondary schools were surveyed comparing their attitudes in terms of RFID to other recent technologies. Consequences of this survey are incorporated into the curriculum of the new RFID course at our institution. -
From iteration to one - dimensional discrete dynamical systems using CAS
271-296Views:77In our paper we present the basic didactical framework and approaches of a course on one-dimensional discrete dynamical systems made with the help of Computer Algebra Systems (CAS) for students familiar with the fundamentals of calculus. First we review some didactical principles of teaching mathematics in general and write about the advantages of the modularization for CAS in referring to the constructivistic view of learning. Then we deal with our own development, a CAS-based collection of programs for teaching Newton's method for the calculation of roots of a real function. Included is the discussion of domains of attraction and chaotic behaviour of the iterations. We summarize our teaching experiences using CAS. -
The "Teaching Mathematics and Computer Science" Journal logo's mathematical background
55-65Views:53In the present contribution we give an elementary technology for drawing the geodesics, paracycles and hypercycles on the pseudosphere. -
A constructive and metacognitive teaching path at university level on the Principle of Mathematical Induction: focus on the students' behaviours, productions and awareness
133-161Views:252We present the main results about a teaching/learning path for engineering university students devoted to the Principle of Mathematical Induction (PMI). The path, of constructive and metacognitive type, is aimed at fostering an aware and meaningful learning of PMI and it is based on providing students with a range of explorations and conjecturing activities, after which the formulation of the statement of the PMI is devolved to the students themselves, organized in working groups. A specific focus is put on the quantification in the statement of PMI to bring students to a deep understanding and a mature view of PMI as a convincing method of proof. The results show the effectiveness of the metacognitive reflections on each phase of the path for what concerns a) students' handling of structural complexity of the PMI, b) students' conceptualization of quantification as a key element for the reification of the proving process by PMI; c) students' perception of the PMI as a convincing method of proof.
Subject Classification: 97B40, 97C70
-
Solving mathematical problems by using Maple factorization algorithms
293-297Views:112Computer algebra gives methods for manipulating mathematical expression. In this paper we use the Maple software to solve some elementary problems. Computeraided approach in the instruction of mathematics helps to impart problem solving skills to students. -
Longest runs in coin tossing. Teaching recursive formulae, asymptotic theorems and computer simulations
261-274Views:122The coin tossing experiment is studied, focusing on higher education. The length of the longest head run can be studied by asymptotic theorems ([3]), by recursive formulae ([10]) or by computer simulations . In this work we make a comparative analysis of recursive formulas, asymptotic results and Monte Carlo simulation for education. We compare the distribution of the longest head run and that of the longest run (i.e. the longest pure heads or pure tails) studying fair coin events. We present a method that helps to understand the concepts and techniques mentioned in the title, which can be a useful didactic tool for colleagues teaching in higher education. -
The hyperbola and Geogebra in high-school instruction
277-285Views:116In this article the results of teaching/learning hyperbola and its characteristics in high-school using computers and GeoGebra are shown. Students involved in the research attend Engineering School "Nikola Tesla" in Leposavic, Serbia. The aim of the research was to define ways and volume of computer and GeoGebra usage in mathematics instruction in order to increase significantly students' mathematical knowledge and skills. -
Forming the concept of parameter with examples of problem solving
201-215Views:109Pupils are encountering difficulties with learning algebra. In order for them to understand algebraic concepts, particularly the concept of parameter it was decided by the teacher of mathematics and Information Technology to integrate the teaching of these two subjects. The aim of this study is to investigate whether, and to what degree, software can be useful in process of forming the concept of parameter. This longitudinal study was conducted in a junior high school (13-16 year old children) using different computer programs. -
Teaching integral transforms in secondary schools
241-260Views:98Today, Hungarian students in the secondary schools do not know the idea of complex numbers, and they can not integrate except those ones who learn mathematics in advance level. Without this knowledge we can teach Fourier transform for students. Why should we teach Fourier transform (FT) or Wavelet transform (WT) for them? To teach image file formats like JPEG, (JPEG2000) we need to talk about integral transforms. For students who are good in computer programming, writing the program of 1D FT or 2D FT is a nice task. In this article we demonstrate how we can teach Fourier and Wavelet transform for students in secondary school. -
Mobile devices in Hungarian university statistical education
19-48Views:164The methodological renewal of university statistics education has been continuous for the last 30 years. During this time, the involvement of technology tools in learning statistics played an important role. In the Introduction, we emphasize the importance of using technological tools in learning statistics, also referring to international research. After that, we firstly examine the methodological development of university statistical education over the past three decades. To do this, we analyze the writings of statistics teachers teaching at various universities in the country. To assess the use of innovative tools, in the second half of the study, we briefly present an online questionnaire survey of students in tertiary economics and an interview survey conducted with statistics teachers.
Subject Classification: 97-01, 97U70, 87K80
-
Cultivating algorithmic thinking: an important issue for both technical and HUMAN sciences
107-116Views:119Algorithmic thinking is a valuable skill that all people should master. In this paper we propose a one-semester, algorithm-oriented computer science course for human science students. According to our experience such an initiative could succeed only if the next recipe is followed: interesting and practical content + exciting didactical methods + minimal programming. More explicitly, we suggest: (1) A special, simple, minimal, pseudo-code like imperative programming language that integrates a graphic library. (2) Interesting, practical and problem-oriented content with philosophical implications. (3) Exciting, human science related didactical methods including art-based, inter-cultural elements. -
Erratum to the paper "The theory of functional equations in high school education" Teaching Mathematics and Computer Science 10/2 (2012), 345-360
145Views:88A correction is necessary in subsection 2.5. although this does not affect the truth of the main formula.