Search
Search Results
-
Interdisciplinary Secondary-School Workshop: Physics and Statistics
179-194Views:55The paper describes a teaching unit of four hours with talented students aged 15-18. The workshop was designed as a problem-based sequence of tasks and was intended to deal with judging dice whether they are regular or loaded. We first introduced the students to the physics of free rotations of rigid bodies to develop the physics background of rolling dice. The highlight of this part was to recognise that cubes made from homogeneous material are the optimal form for six-sided objects leading to equal probabilities of the single faces. Experiments with all five regular bodies would lead to similar results; nevertheless, in our experiments we focused on regular cubes. This reinsures that the participants have their own experience with the context. Then, we studied rolling dice from the probabilistic point of view and – step-by-step – by extending tasks and simulations, we introduced the idea of the chi-squared test interactively with the students. The physics and the statistics part of the paper are largely independent and can be also be read separately. The success of the statistics part is best described by the fact that the students recognised that in some cases of loaded dice, it is easier to detect that property and in other cases one would need many data to make a decision with small error probabilities. A physical examination of the dice under inspection can lead to a quick and correct decision. Yet, such a physical check may fail for some reason. However, a statistical test will always lead to reasonable decision, but may require a large database. Furthermore, especially for smaller datasets, balancing the risk of different types of errors remains a key issue, which is a characteristic feature of statistical testing.
Subject Classification: F90, K90, M50, R30
-
Teaching puzzle-based learning: development of transferable skills
245-268Views:36While computer science and engineering students are trained to recognise familiar problems with known solutions, they may not be sufficiently prepared to address novel real-world problems. A successful computer science graduate does far more than just program and we must train our students to reach the required levels of analytical and computational thinking, rather than hoping that it will just 'develop'. As a step in this direction, we have created and experimented with a new first-year level course, Puzzle-based Learning (PBL), that is aimed at getting students to think about how to frame and solve unstructured problems. The pedagogical goal is increase students' mathematical awareness and general problem solving skills by employing puzzles, which are educational, engaging, and thought provoking. In this paper we continue sharing our experiences in teaching such a course. Whereas a brief discussion on our pedagogical objectives were covered in the first paper together with the material of the first of two lectures on pattern recognition, this follow-up paper presents the material of the second of two lectures, in which additional exercises are discussed to reinforce the lesson. Along the way we provide a glimpse of some foundational ideas of computer science such as incomputability and general system development strategies such as incremental and iterative reasoning. This paper discusses the outcomes of PBL courses, which include expected improvement in the overall results achieved by students who have undertaken PBL courses, compared to those students who have not. -
Teaching puzzle-based learning: development of basic concepts
183-204Views:17While computer science and engineering students are trained to recognise familiar problems with known solutions, they may not be sufficiently prepared to address novel real-world problems. A successful computer science graduate does far more than just program and we must train our students to reach the required levels of analytical and computational thinking, rather than hoping that it will just 'develop'. As a step in this direction, we have created and experimented with a new first-year level course, Puzzle-based Learning (PBL), that is aimed at getting students to think about how to frame and solve unstructured problems. The pedagogical goal is increase students' mathematical awareness and general problem solving skills by employing puzzles, which are educational, engaging, and thought provoking. We share our experiences in teaching such a course – apart from a brief discussion on our pedagogical objectives, we concentrate on discussing the presented material which covers (in two lectures) just one selected topic (pattern recognition). In this paper we present the ideas behind foundations for PBL and the material of the first of two lectures on pattern recognition, in which we address core concepts and provide students with sufficient exemplars to illustrate the main points.