Search

Published After
Published Before

Search Results

  • Aspects théoriques de la classification à base de treillis
    125-135
    Views:
    164
    La classification est une notion cruciale dans les systémes orientés objets et se fait de plus en plus présente en représentation de connaissances. Elle permet principalement de trouver des regularités dans un grand tableau de nombres. Dans ce sens général, il s'agit donc d'une méthode qui joue un role important dans différents domaines scientifiques oú les connaissances sont á organiser selon certaines hiérarchies (biologie, chimie, etc.). En informatique nous parlons aussi de langages de classes sans mentionner es aspects mathématiques de la classification. Dans cet article l'auteur a pour but de proposer une introduction á la classification á travers la notion de treillis. Nous sommes persuadés que l'étude de la classification permet aux étudiants de familiariser leurs connaissances sur la modélisation et la programmation orientée objet.
    The classification is a crucial notion in the object oriented systems and more and more appears in the knowledge representation. It allows us to find the regularities in a huge table of numbers. In this general sense the classification plays an important role in various domains of science, where knowledge has to be organized into hierarchy (biology, chemistry, etc.) In the computer science the languages of classes are often studied without mathematical aspects of the classification. In this paper the author has the goal to propose an introduction to the classification through the notion of lattices.We are convinced that the study of classification allows students to enlarge their knowledge on the object oriented modelling and programming.
  • An improvement of the classification algorithm results
    131-142
    Views:
    127
    One of the most important aspects of the precision of a classification is the suitable selection of a classification algorithm and a training set for a given task. Basic principles of machine learning can be used for this selection [3]. In this paper, we have focused on improving the precision of classification algorithms results. Two kinds of approaches are known: Boosting and Bagging. This paper describes the use of the first method – boosting [6] which aims at algorithms generating decision trees. A modification of the AdaBoost algorithm was implemented. Another similar method called Bagging [1] is mentioned. Results of performance tests focused on the use of the boosting method on binary decision trees are presented. The minimum number of decision trees, which enables improvement of the classification performed by a base machine learning algorithm, was found. The tests were carried out using the Reuters 21578 collection of documents and documents from an internet portal of TV Markíza.
  • Development of classification module for automated question generation framework
    89-102
    Views:
    168
    Automatic question generation is in the focus of recent researches which includes bordering disciplines like education, text mining, knowledge-engineering. The elaborated system generates multi-choice questions from textbooks without using an external semantic database. One of the base modules of the system is the classification module defining the extracted word. This paper describes modules of the framework including a detailed analysis of the classification part. We show the operability of the elaborated system through a practical test.
  • Integrating Didactic Games in Higher Education: Benefits and Challenges
    1-15
    Views:
    829

    In our paper, we study the reasons for the introduction of didactic games and the way of their application in higher education, especially in teaching mathematics. After describing the main characteristics and needs of Generation Z students, we outline the advantages and drawbacks of gamification and game-based learning, followed by some new aspects to their classification. The idea of device-based grouping arose because the most commonly used methods require IC tools. Gen Zs naturally accept gamified learning materials available on digital and mobile platforms, but we must not forget about traditional games either. In higher education, especially in the case of small-group teaching there should also be room for traditional, specialized didactic games, of which we focus on the benefits of card games.

    Subject Classification: 97C70, 97D20, 97D40, 97U70

  • Artworks as illustrations in Hungarian high school Mathematics textbooks
    103-117
    Views:
    164

    Three different series of Hungarian Mathematics textbooks used in grade 9-12 education for the past 30 years have been analysed in this research. Our aim is to show and evaluate how the visual arts have been connected to mathematical ideas in these textbooks. We have applied the six dimensions of evaluation, which have recently been introduced in (Diego-Mantec on, Blanco, Búa Ares, & González Sequeiros, 2019) to categorise the illustrations of the three different series. We show examples for each dimension from the textbooks, and we find that even if the number of artistic illustrations in these coursebooks have significantly increased, in most cases these sporadic examples are not closely related to the mathematical context, mainly used for ornamental purposes to decorate the core text. Based on this classification we conclude that the number of artistic illustrations with underlying math concepts making students' participation more active could and should be significantly increased.

    Subject Classification: 97U20

  • Nice tiling, nice geometry!?!
    269-280
    Views:
    125
    The squared papers in our booklets, or the squared (maybe black and white) pavements in the streets arise an amusing problem: How to deform the side segments of the square pattern, so that the side lines further remain equal (congruent) to each other? More precisely, we require that each congruent transformation of the new pattern, mapping any deformed side segment onto another one, leaves the whole (infinitely extended) pattern invariant (unchanged).
    It turns out that there are exactly 14 types of such edge-transitive (or so-called isotoxal) quadrangle tilings, sometimes with two different forms (e.g. black and white) of quadrangles (see Figure 2). Such a collection of tiling can be very nice, perhaps also useful for decorative pavements in streets, in flats, etc.
    I shall sketch the solution of the problem that leads to fine (and important) mathematical concepts (as barycentric triangulation of a polygonal tiling, adjacency operations, adjacency matrix, symmetry group of a tiling, D-symbol, etc). All these can be discussed in an enjoyable way, e.g. in a special mathematical circle of a secondary school, or in more elementary form as visually attractive figures in a primary school as well.
    My colleague, István Prok [11] developed an attractive computer program on the Euclidean plane crystallographic groups with a nice interactive play (for free download), see our Figures 3-5.
    A complete classification of such Euclidean plane tilings (not only with quadrangles) can be interesting for university students as well, hopefully also for the Reader (Audience). This is why I shall give some references, where you find also other ones.
    Further problems indicate the efficiency of this theory now. All these demonstrate the usual procedure of mathematics and the (teaching) methodology as well: We start with a concrete problem, then extend it further, step-by-step by creating new manipulations, concepts and methods. So we get a theory at certain abstraction level. Then newer problems arise, etc.
    This paper is an extended version of the presentation and the conference paper [7]. The author thanks the Organizers, especially their head Professor Margita Pavlekovic for the invitation, support and for the kind atmosphere of the conference.
  • Exploring the basic concepts of Calculus through a case study on motion in gravitational space
    111-132
    Views:
    231

    In universities, the Calculus course presents significant challenges year after year. In this article, we will demonstrate how to use methods of Realistic Mathematics Education (RME) to introduce the concepts of limits, differentiation, and integration based on high school kinematics and dynamics knowledge. All mathematical concepts are coherently built upon experiences, experiments, and fundamental dynamics knowledge related to motion in a gravitational field. With the help of worksheets created using GeoGebra or Microsoft Excel, students can conduct digital experiments and later independently visualize and relate abstract concepts to practical applications, thereby facilitating their understanding.

    Subject Classification: 97D40, 97I40, 97M50

  • Connections between discovery learning through the Pósa Method and the secondary school leaving examination in three Hungarian mathematics classrooms
    67-85
    Views:
    429

    The Pósa Method is a guided discovery learning method that has been used in Hungarian education in the form of extracurricular activities for "gifted" mathematics students. A four-year experiment implemented the method in three more "average" classrooms. This article reports on the relationship between the Pósa Method and the standardized secondary school leaving mathematics exam (Matura Exam in short) in Hungary. Data consists of students' survey responses, teacher interviews, and exam results from the three Hungarian classrooms who took part in the four-year experiment. We identify aspects of the Pósa Method that can benefit and hinder exam performance. In addition, we find that learning through the Pósa Method for the four years of high school has adequately prepared students for the exam.

    Subject Classification: 97D44, 97D54, 97D64

  • Regula falsi in lower secondary school education II
    121-142
    Views:
    222

    The aim of this paper is to investigate the pupils' word problem solving strategies in lower secondary school education. Students prior experiences with solving word problems by arithmetic methods can create serious difficulties in the transition from arithmetic to algebra. The arithmetical methods are mainly based on manipulation with numbers. When pupils are faced with the methods of algebra they often have difficulty in formulating algebraic equations to represent the information given in word problems. Their troubles are manifested in the meaning they give to the unknown, their interpretation what an equation is, and the methods they choose to set up and solve equations. Therefore they mainly use arithmetical and numerical checking methods to solve word problems. In this situation it is necessary to introduce alternative methods which make the transition from arithmetic to algebra more smooth. In the following we will give a detailed presentation of the false position method. In our opinion this method is useful in the lower secondary school educational processes, especially to reduce the great number of random trial-and-error problem solving attempts among the lower secondary school pupils. We will also show the results of some problem solving activities among grade 6-8 pupils. We analysed their problem solving strategies and we compared our findings with the results of other research works.

    Subject Classification: 97-03, 97-11, 97B10, 97B50, 97D40, 97F10, 97H10, 97H20, 97H30, 97N10, 97N20

  • The use of e-tests in education as a tool for retrieval practice and motivation
    59-76
    Views:
    257

    In many studies we can read about what techniques are used in the educational process to deepen knowledge, and what can motivate students to learn. We aimed to give our students (who will be a teacher) a practical demonstration of learning techniques. We carried it within the framework of a course, at the end of which we also examined how much it motivates students if they write an e-test as a retrospective in order to deepen the material of the lesson. In the paper, we will present the results of the research as well as students’ opinions regarding the motivating effect of the tests.

    Subject Classification: 97-01, 97D40, 97I10

  • Prime building blocks in the mathematics classroom
    217-228
    Views:
    324

    This theoretical paper is devoted to the presentation of the manifold opportunities in using a little-known but powerful mathematical manipulative, the so-called prime building blocks, originally invented by two close followers of Tamás Varga, to support discovery of various concepts in arithmetic in middle school, including the Fundamental Theorem of Arithmetic or as it is widely taught, prime factorization. The study focuses on a teaching proposal to show how students can learn about greatest common divisor (GCD) and least common multiple (LCM) with understanding, and meanwhile addresses internal connections and levels of abstractness within elementary number theory. The mathematical and methodological background to understanding different aspects of the concept prime property are discussed and the benefits of using prime building blocks to scaffold students’ discovery are highlighted. Although the proposal was designed to be suitable for Hungarian sixth graders, mathematical context and indications for the use of the manipulative in both primary and high school are given.

    Subject Classification: F60, C30, E40, U60

  • Balanced areas in quadrilaterals - Anne's Theorem and its unknown origin
    93-103
    Views:
    242

    There are elegant and short ways to prove Anne's Theorem using analytical geometry. We found also geometrical proofs for one direction of the theorem. We do not know, how Anne came to his theorem and how he proved it (probably not analytically), it would be interesting to know. We give a geometric proof (both directions), mention some possibilities – in more details described in another paper – for using this topic in teaching situations, and mention some phenomena and theorems closely related to Anne's Theorem.

    Subject Classification: G10, G30

  • Challenges that a teacher-researcher faces during an action research – a case study
    89-99
    Views:
    220

    This paper explores the dual role of the teacher-researcher in a four-year action research project focused on problem-based learning in mathematics. It highlights the challenges faced during the phases of planning, implementation, analysis, and reflection. Drawing on insights from the author’s experiences and observations based on both qualitative and quantitative data collection methods, the study identifies distinct challenges linked to the dual role, like differing design goals or subjective-objective voices. The author also proposes solutions to the identified challenges, such as collaboration with university experts and using reflective practices. Furthermore, the research underscores the beneficial impact of action research on enhancing teachers’ awareness and bridging the theory-practice gap, calling for further studies in this area.

    Subject Classification: 97D99

  • Looking back on Pólya’s teaching of problem solving
    207-217
    Views:
    475

    This article is a personal reflection on Pólya's work on problem solving, supported by a re-reading of some of his books and viewing his film Let Us Teach Guessing. Pólya's work has had lasting impact on the goals of school mathematics, especially in establishing solving problems (including non-routine problems) as a major goal and in establishing the elements of how to teach for problem solving. His work demonstrated the importance of choosing rich problems for students to explore, equipping them with some heuristic strategies and metacognitive awareness of the problem solving process, and promoting 'looking back' as a way of learning from the problem solving experience. The ideas are all still influential. What has changed most is the nature of classrooms, with the subsequent appreciation of a supporting yet challenging classroom where students work collaboratively and play an active role in classroom discussion.

    Subject Classification: 97D50, 97A30

  • A whole new vigor: About Montel’s book "Les mathématiques et la vie" (1947)
    51-60
    Views:
    172

    In this paper, we consider a talk presented by the mathematician Paul Montel in Paris in 1944, dedicated to a general presentation of the importance of mathematics in everyday’s life. The text of this talk, and the context of its elaboration, allows various inceptions in the French mathematical life in the middle of 20th century. In particular Montel’s insistence on applications of mathematics strongly contrasts with the main tendencies of the French mathematical stage after the war under the impulse of the Bourbaki group.

    Subject Classification: 97A40, 01A60, 60-03

  • Charakteristische Dreieckpunkte in der projektiv-erweiterten hyperbolischen Ebene
    299-315
    Views:
    86
    Some basic planimetric constructions regarding segments, angles and triangles are shown in the Cayley-Klein model of the hyperbolic plane. Relationship with the situation in the Euclidean plane is given. H-triangles are classified considering the location of their vertices and sides with respect to the absolute. There are 28 types of triangles. It is shown that there exist 12 pairs of dual triangles, while 4 types of triangles are dual to themselves. For every type of triangle the existence and number of the characteristic points are determined. Few examples of triangles with construction of their characteristic points, incircles and circumcircles are given.
  • A Nim like game and a machine that plays it: a learning situation at the interface of mathematics and computer science
    317-326
    Views:
    334

    The purpose of this work is to take a didactic look at a learning situation located at the interface between mathematics and computer science. This situation offers a first approach to the concept of artificial intelligence through the study of a reinforcement learning device. The learning situation, inspired by the Computer Science Unplugged approach, is based on a combinatorial game, along with a device that learns how to play this game. We studied the learning potential when the human players face the machine. After an a priori analysis using the Theory of Didactic Situations (TDS), we conducted a pre-experiment in order to strengthen our hypotheses. In this article, we will focus on the analysis of the didactic variables, the values we have chosen for these variables and their effects on students’ strategies.

    Subject Classification: 97D99, 97K99, 97P80

  • Teaching model-based testing
    1-17
    Views:
    1763

    Different testing methodologies should play an important role in the education of informatics. In the model-based testing (MBT) approach, the specification of the system is described with a formal model. This model can be used to revise the correctness of the specification and as a starting point for automatic test generation. The main problem with MBT is however, that there is a huge gap between theory and practice and that this approach has a high learning curve. To cope with these problems, current paper shows, how the MBT approach can be introduced to students through a small scale example.

    Subject Classification: P50

  • On the nine-point conic of hyperbolic triangles
    195-211
    Views:
    88

    In the Cayley–Klein model, we review some basic results concerning the geometry of hyperbolic triangles. We introduce a new definition of the circumcircle of a hyperbolic triangle, guaranteed to exist in every case, and describe its main properties. Our central theorem establishes, by means of purely elementary projective geometric arguments, that a hyperbolic triangle has a nine-point conic if and only if it is a right triangle.

    Subject Classification: 51M09

  • An examination of descriptive statistical knowledge of 12th-grade secondary school students - comparing and analysing their answers to closed and open questions
    63-81
    Views:
    198

    In this article, we examine the conceptual knowledge of 12th-grade students in the field of descriptive statistics (hereafter statistics), how their knowledge is aligned with the output requirements, and how they can apply their conceptual knowledge in terms of means, graphs, and dispersion indicators. What is the proportion and the result of their answers to (semi-)open questions for which they have the necessary conceptual knowledge, but which they encounter less frequently (or not at all) in the classroom and during questioning? In spring 2020, before the outbreak of the pandemic in Hungary, a traditional-classroom, “paper-based” survey was conducted with 159 graduating students and their teachers from 3 secondary schools. According to the results of the survey, the majority of students have no difficulties in solving the type of tasks included in the final exam. Solving more complex, open-ended tasks with longer texts is more challenging, despite having all the tools to solve them, based on their conceptual knowledge and comprehension skills. A valuable supplement to the analysis and interpretation of the results is the student attitudes test, also included in the questionnaire.

    Subject Classification: 97K40, 97-11, 97D60

  • Freudenthal fantasy on the bus, an American adaptation
    133-142
    Views:
    162

    In the 1960’s two mathematicians, Hans Freudenthal in the Netherlands and Tamás Varga in Hungary, had argued that people learn mathematics by being actively involved and investigating realistic mathematical problems. Their method lives on in today’s teaching and learning through the various components of cooperative and active learning, by taking ownership in learning, and learning through student dialogue. The goal is to create a welcoming classroom atmosphere in which play takes the front seat. One such scenario is visiting various (animal) stations at the zoo by bus (illustrated by pictures). Passengers are getting on and off the bus at each station (illustrated by arrows), which is modeled on the open number line. This adapted and modified action research was carried out with 5-yearl-old children in public schools of Staten Island, NY in 2019.

    Subject Classification: 97D40, 97F20, 97F30

  • The time spent on board games pays off: links between board game playing and competency motivation
    119-131
    Views:
    329

    The impact playing has on the development of thinking is an important topic of psychology of learning, brain research and mathematics didactics.
    Our research is also connected to the aforementioned topic. We investigated the effects of playing board games on competence motivation and the development of mathematical competencies.
    In this paper, we present the results of an experiment carried out in a secondary school class.
    The experimental group spent one of three weekly mathematics lessons playing board games.
    Apart from the several advantages of playing games in general, we can conclude that, based on the results of the national competence measurement, the mathematical competence of the students developed properly.
    The readiness and the progress of the pupils were compared on the basis of input and output tests and an initial knowledge measurement and, at the same time, we compared their level of mathematical competence with the results of the national competence
    measurement.

    Subject Classification: 97C70, 97D40

  • Sage and scribe – asymmetrical pair work that can easily fit into any mathematics lesson, yet still have cooperative benefits
    133-164
    Views:
    607

    This article uses a case study experiment to learn the characteristics of a pair work, called the sage and scribe method (Kagan, 2008). We also wished to explore the positive and negative effects of the systematic application of this single cooperative element without any other structural changes during the lessons. In the case study experiment, we asked two teachers, accustomed to traditional frontal teaching methods, to substitute individual work tasks in their standard lesson plans with the sage and scribe method. Our experiments indicate that this method wastes insignificant time, requires little extra effort on the part of the teacher, yet has many of the positive effects of cooperative methods: in our experiments, students received immediate feedback, corrected each other’s mistakes, learned from each other in meaningful discussions and engaged in collaborative reasoning to address emerging problems.

    Subject Classification: 97D40

  • A case study of the integration of Algorithm Visualizations in Hungarian programming education
    51-66
    Views:
    268

    In this study, I will introduce how Algorithm Visualizations (AV) can help programming education or, in this case, the acquisition of basic programming theorems. I used two di erent methods to test this: in the first round, I examined in a larger group how much the students' ability to solve specific tasks changes after being introduced to a visualization tool, and then, what was their motivation and experience during this process. In the second round, I looked for the components that could be important when choosing a tool with the help of an in-depth interview with a smaller number of individuals. In both cases, I describe the research, experience, and results of the study, and then summarize them at the end.

    Subject Classification: 97P10

  • Task variations for backtrack
    107-120
    Views:
    179

    This article has been written for informatics teachers who want to issue back-track based tasks on their lessons or as homework or on competitions. We present a few methods to generate a more complicated problem from a simpler task, which will be more complex, and its solution needs a good idea or trick. Starting from an example, we lead the reader through increasingly di cult task variations.

    Subject Classification: 97P50

Database Logos

Keywords