Search

Published After
Published Before

Search Results

  • Aspects théoriques de la classification à base de treillis
    125-135
    Views:
    163
    La classification est une notion cruciale dans les systémes orientés objets et se fait de plus en plus présente en représentation de connaissances. Elle permet principalement de trouver des regularités dans un grand tableau de nombres. Dans ce sens général, il s'agit donc d'une méthode qui joue un role important dans différents domaines scientifiques oú les connaissances sont á organiser selon certaines hiérarchies (biologie, chimie, etc.). En informatique nous parlons aussi de langages de classes sans mentionner es aspects mathématiques de la classification. Dans cet article l'auteur a pour but de proposer une introduction á la classification á travers la notion de treillis. Nous sommes persuadés que l'étude de la classification permet aux étudiants de familiariser leurs connaissances sur la modélisation et la programmation orientée objet.
    The classification is a crucial notion in the object oriented systems and more and more appears in the knowledge representation. It allows us to find the regularities in a huge table of numbers. In this general sense the classification plays an important role in various domains of science, where knowledge has to be organized into hierarchy (biology, chemistry, etc.) In the computer science the languages of classes are often studied without mathematical aspects of the classification. In this paper the author has the goal to propose an introduction to the classification through the notion of lattices.We are convinced that the study of classification allows students to enlarge their knowledge on the object oriented modelling and programming.
  • An improvement of the classification algorithm results
    131-142
    Views:
    127
    One of the most important aspects of the precision of a classification is the suitable selection of a classification algorithm and a training set for a given task. Basic principles of machine learning can be used for this selection [3]. In this paper, we have focused on improving the precision of classification algorithms results. Two kinds of approaches are known: Boosting and Bagging. This paper describes the use of the first method – boosting [6] which aims at algorithms generating decision trees. A modification of the AdaBoost algorithm was implemented. Another similar method called Bagging [1] is mentioned. Results of performance tests focused on the use of the boosting method on binary decision trees are presented. The minimum number of decision trees, which enables improvement of the classification performed by a base machine learning algorithm, was found. The tests were carried out using the Reuters 21578 collection of documents and documents from an internet portal of TV Markíza.
  • Development of classification module for automated question generation framework
    89-102
    Views:
    168
    Automatic question generation is in the focus of recent researches which includes bordering disciplines like education, text mining, knowledge-engineering. The elaborated system generates multi-choice questions from textbooks without using an external semantic database. One of the base modules of the system is the classification module defining the extracted word. This paper describes modules of the framework including a detailed analysis of the classification part. We show the operability of the elaborated system through a practical test.
  • Artworks as illustrations in Hungarian high school Mathematics textbooks
    103-117
    Views:
    164

    Three different series of Hungarian Mathematics textbooks used in grade 9-12 education for the past 30 years have been analysed in this research. Our aim is to show and evaluate how the visual arts have been connected to mathematical ideas in these textbooks. We have applied the six dimensions of evaluation, which have recently been introduced in (Diego-Mantec on, Blanco, Búa Ares, & González Sequeiros, 2019) to categorise the illustrations of the three different series. We show examples for each dimension from the textbooks, and we find that even if the number of artistic illustrations in these coursebooks have significantly increased, in most cases these sporadic examples are not closely related to the mathematical context, mainly used for ornamental purposes to decorate the core text. Based on this classification we conclude that the number of artistic illustrations with underlying math concepts making students' participation more active could and should be significantly increased.

    Subject Classification: 97U20

  • Nice tiling, nice geometry!?!
    269-280
    Views:
    124
    The squared papers in our booklets, or the squared (maybe black and white) pavements in the streets arise an amusing problem: How to deform the side segments of the square pattern, so that the side lines further remain equal (congruent) to each other? More precisely, we require that each congruent transformation of the new pattern, mapping any deformed side segment onto another one, leaves the whole (infinitely extended) pattern invariant (unchanged).
    It turns out that there are exactly 14 types of such edge-transitive (or so-called isotoxal) quadrangle tilings, sometimes with two different forms (e.g. black and white) of quadrangles (see Figure 2). Such a collection of tiling can be very nice, perhaps also useful for decorative pavements in streets, in flats, etc.
    I shall sketch the solution of the problem that leads to fine (and important) mathematical concepts (as barycentric triangulation of a polygonal tiling, adjacency operations, adjacency matrix, symmetry group of a tiling, D-symbol, etc). All these can be discussed in an enjoyable way, e.g. in a special mathematical circle of a secondary school, or in more elementary form as visually attractive figures in a primary school as well.
    My colleague, István Prok [11] developed an attractive computer program on the Euclidean plane crystallographic groups with a nice interactive play (for free download), see our Figures 3-5.
    A complete classification of such Euclidean plane tilings (not only with quadrangles) can be interesting for university students as well, hopefully also for the Reader (Audience). This is why I shall give some references, where you find also other ones.
    Further problems indicate the efficiency of this theory now. All these demonstrate the usual procedure of mathematics and the (teaching) methodology as well: We start with a concrete problem, then extend it further, step-by-step by creating new manipulations, concepts and methods. So we get a theory at certain abstraction level. Then newer problems arise, etc.
    This paper is an extended version of the presentation and the conference paper [7]. The author thanks the Organizers, especially their head Professor Margita Pavlekovic for the invitation, support and for the kind atmosphere of the conference.
  • Integrating Didactic Games in Higher Education: Benefits and Challenges
    1-15
    Views:
    828

    In our paper, we study the reasons for the introduction of didactic games and the way of their application in higher education, especially in teaching mathematics. After describing the main characteristics and needs of Generation Z students, we outline the advantages and drawbacks of gamification and game-based learning, followed by some new aspects to their classification. The idea of device-based grouping arose because the most commonly used methods require IC tools. Gen Zs naturally accept gamified learning materials available on digital and mobile platforms, but we must not forget about traditional games either. In higher education, especially in the case of small-group teaching there should also be room for traditional, specialized didactic games, of which we focus on the benefits of card games.

    Subject Classification: 97C70, 97D20, 97D40, 97U70

  • Computer cooking vs. problem solving
    35-58
    Views:
    275

    Computer cooking is a task-related phenomenon where students (end-users) must blindly follow a long list of orders without any connection to the content of the problem, if there is any. Despite its low efficacy, this method is widely used and accepted in informatics both in the learning-teaching process and testing. The National Base Curriculum 2020 in Hungary is in complete accordance with the ‘Informatics Reference Framework for Schools’, but the course books hardly use the latest results of computer education research. The present paper provides examples of how the results of computer education research can be integrated into teaching-learning materials and classroom practices and discusses the effectiveness and consequences of the different solutions, where tool-centred approaches are compared to problem-focused solutions.

    Subject Classification: 94-01

  • The tools for developing a spatial geometric approach
    207-216
    Views:
    183

    Tamás Varga writes about the use of tools: "The rational use of tools - the colored bars, the Dienes set, the logical set, the geoboard, and some other tools - is an element of our experiment that is important for all students, but especially for disadvantaged learners." (Varga T. 1977) The range of tools that can be used well in teaching has grown significantly over the years. This paper compares spatial geometric modeling kits. Tamás Varga uses the possibilities of the Babylon building set available in Hungary in the 1970s, collects space and flat geometry problems for this (Varga T. 1973). Similarly, structured kits with significantly more options have been developed later, e.g. ZomeTool and 4D Frame. These tools are regularly used in the programs of the International Experience Workshop (http://www.elmenymuhely.-hu/?lang=en). Teachers, schools that have become familiar with the versatile possibilities of these sets, use them often in the optional and regular classes. We recorded a lesson on video where secondary students worked with the 4D Frame kit. We make some comments and offer some thoughts on this lesson.

    Subject Classification: 97G40, 97D40

  • Trigonometric identities via combinatorics
    73-91
    Views:
    220

    In this paper we consider the combinatorial approach of the multi-angle formulas sin nΘ and cos nΘ. We describe a simple "drawing rule" for deriving the formulas immediately. We recall some theoretical background, historical remarks, and show some topics that is connected to this problem, as Chebyshev polynomials, matching polynomials, Lucas polynomial sequences.

    Subject Classification: 05A19

  • Metacognition – necessities and possibilities in teaching and learning mathematics
    69-87
    Views:
    197

    This article focuses on the design of mathematics lessons as well as on the research in mathematics didactics from the perspective that metacognition is necessary and possible.
    Humans are able to self-reflect on their thoughts and actions. They are able to make themselves the subject of their thoughts and reflections. In particular, it is possible to become aware of one’s own cognition, which means the way in which one thinks about something, and thus regulate and control it. This is what the term metacognition, thinking about one’s own thinking, stands for.
    Human thinking tends to biases and faults. Both are often caused by fast thinking. Certain biases occur in mathematical thinking. Overall, this makes it necessary to think slow and to reflect on one’s own thinking in a targeted manner.
    The cognitive processes of thinking, learning and understanding in mathematics become more effective and successful when they are supplemented and extended by metacognitive processes. However, it depends on a specific design of the mathematics lessons and the corresponding tasks in mathematics.

    Subject Classification: 97C30, 97C70, 97D40, 97D50, 97D70

  • Teaching undergraduate mathematics - a problem solving course for first year
    183-206
    Views:
    212

    In this paper we describe a problem solving course for first year undergraduate mathematics students who would be future school teachers.

    Subject Classification: 97B50, 97B70, 97D50, 97D60, 97F60, 97U30

  • What can we learn from Tamás Varga’s work regarding the arithmetic-algebra transition?
    39-50
    Views:
    219

    Tamás Varga’s Complex Mathematics Education program plays an important role in Hungarian mathematics education. In this program, attention is given to the continuous “movement” between concrete and abstract levels. In the process of transition from arithmetic to algebra, the learner moves from a concrete level to a more abstract level. In our research, we aim to track the transition process from arithmetic to algebra by studying the 5-8-grader textbooks and teacher manuals edited under Tamás Varga's supervision. For this, we use the appearance of “working backward” and “use an equation” heuristic strategies in the examined textbooks and manuals, which play a central role in the mentioned process.

    Subject Classification: 97-01, 97-03, 97D50

  • How do secondary school students from the Kurdistan Region of Iraq understand the concept of function?
    221-244
    Views:
    282

    The study investigates secondary school students' understanding of the concept of function. The paper focuses on three main aspects: students' ability to define the concept of function; students' ability to recognize different representations of function; and students' ability to convert between different representations. A test was developed to assess the three main constructs of the study and administered to 342 students in secondary schools in the Kurdistan Region of Iraq. According to the results, students have diffculties in recognizing different representations of function and conversion between them. Connections between different parts of the test may provide hints on educational challenges of how to appropriately teach functions.

    Subject Classification: 26Bxx, 97D60

  • Task reformulation as a practical tool for formation of electronic digest of tasks
    1-27
    Views:
    145
    Creative thinking as well as thinking itself is being developed at active learning-cognitive activity of students. To make mathematic matter a subject of interest and work of students at classes, it is efficacious to submit it in a form of tasks. The tasks may be set up in a purposeful system of tasks by means of which reaching the teaching goals in the sense of quality and durability of gained knowledge may be more effective. A suitable means for presentation of tasks with their characteristics (as e.g. didactic function and cognitive level) as well as task systems themselves is an electronic digest of tasks as a database. The analysis of textbooks and digests of tasks commonly used at schools in Slovakia shows that they do not include all the types of tasks necessary for setting up complete (in the sense of didactic functions) task systems. One of the most important methods used for formation of the missing tasks is reformulation of tasks. The individual strategies of task reformulation are explained in details on examples in this article.
  • Integrating elements of data science into high-school teaching: Naïve Bayes-classification algorithm and programming in Python
    307-316
    Views:
    242

    Probability theory and mathematical statistics are traditionally one of the most difficult chapters of mathematics to teach. One of the authors, Péter Princz has experience in teaching various topics via computer programming of the problem at hand as a class activity. The proposed method is to involve programming as a didactic tool in hard-to-teach topics. The intended goal in this case is to implement a naïve Bayes-classifier algorithm in Python and demonstrate the machine-learning capabilities of it by applying it to a real-world dataset of edible or poisonous mushrooms. The students would implement the algorithm in a playful and interactive way. The proposed incremental development process aligns well with the spirit of Tamás Varga who considered computers as modern tools of experimental problem solving as early as in the 1960s.

    Subject Classification: 97D40, 97D50, 97K50, 97K99, 97M60, 97P40, 97P50, 97U50

  • Programming Theorems and Their Applications
    213-241
    Views:
    270

    One of the effective methodological approaches in programming that supports the design and development of reliable software is analogy-based programming. Within this framework, the method of problem reduction plays a key role. Reducing a given problem to another one whose solving algorithm is already known can be made more efficient by the application of programming theorems. These represent proven, abstract solutions – in a general form – to some of the most common problems in programming. In this article, we present six fundamental programming theorems as well as pose five sample problems. In solving these problems, all six programming theorems will be applied. In the process of reduction, we will employ a concise specification language. Programming theorems and solutions to the problems will be given using the structogram form. However, we will use pseudocodes as descriptions of algorithms resembling their actual implementation in Python. A functional style solution to one of the problems will also be presented, which is to illustrate that for the implementation in Python, it is sufficient to give the specification of the problem for the design of the solution. The content of the article essentially corresponds to that of the introductory lectures of a course we offered to students enrolled in the Applied Mathematics specialization.

    Subject Classification: D40

  • Apollonea.com project: integrating geometry and collaboration in education
    183-194
    Views:
    68

    This article presents the Apollonea.com project, which aims to make the solutions to Apollonius’ problems accessible to students and teachers through modern technology. The web platform contains more than 150 interactive constructions created by students using GeoGebra, allowing for dynamic manipulation and visualization of solutions to various variants of Apollonius’ problems. The project combines classical geometric problems with an interdisciplinary approach, teamwork, and the use of modern technology. The article describes the process of developing the Apollonea.com website, the use of GeoGebra in the project, the structure and functions of the website, and its educational benefits in enhancing students’ geometric skills. The project demonstrates how traditional mathematics education can be connected with modern ICT tools.

    Subject Classification: 97U50, 97G40, 51M04, 68U05

  • Supporting the education of engineering mathematics using the immediate feedback method
    49-61
    Views:
    187

    In the literature, several methods are suggested to deal with problems regarding the efficiency of mathematics education including techniques that help integrate new knowledge into long-term memory. We examined how effective the application of the immediate feedback method is in teaching engineering mathematics. The article presents the method used and the results obtained during the study.

    Subject Classification: 97D40, 97D60

  • Is it possible to develop some elements of metacognition in a Mathematics classroom environment?
    123-132
    Views:
    228

    In an earlier exploratory survey, we investigated the metacognitive activities of 9th grade students, and found that they have only limited experience in the “looking back” phase of the problem solving process. This paper presents the results of a teaching experiment focusing on ninth-grade students’ metacognitive activities in the process of solving several open-ended geometry problems. We conclude that promoting students’ metacognitive abilities makes their problem solving process more effective.

    Subject Classification: 97D50, 97G40

  • Fehleranalyse beim Lösen von offenen Aufgaben Ergebnisse einer empirischen Studie in der Grundschule
    83-113
    Views:
    178
    Open problems play a key role in mathematics education, also in primary school. However, children in primary school work in many relations in a different way from learner in secondary school. Therefore, the (possibly) first confrontation with an open task could be problematical. Within the framework of an international paper and pencil test it was examined how far children of primary school notice the openness of a task and which mistakes they do during working on that task. In particularly are meant by openness different interpretations of the task, which all lead to a set of numbers with more than one element as a result. For evaluation, a common classification system was adapted by slightly modification of the original system.
  • What does ICT help and does not help?
    33-49
    Views:
    260

    Year by year, ICT tools and related teaching methods are evolving a lot. Since 2016, the author of the present lines has been looking for a connection between them that supports the development of mathematical competencies and could be integrated into Transcarpathian minority Hungarian language education too. As a doctoral student at the University of Debrecen, I experienced, for example, how the interactive whiteboard revolutionized illustration in Hungarian mathematics teaching, and how it facilitated students' involvement. During my research of teaching in this regard, in some cases, the digital solution had advantageous effects versus concrete-manipulative representation of
    Bruner's too.
    At the same time, ICT "canned" learning materials (videos, presentations, ...) allow for a shift towards repetitive learning instead of simultaneous active participation, which can be compensated for by the "retrieval-enhanced" learning method.
    I have conducted and intend to conduct several research projects in a Transcarpathian Hungarian primary school. In the research so far, I examined whether, in addition to the financial and infrastructural features of the Transcarpathian Hungarian school, the increased "ICT-supported" and the "retrieval-enhanced" learning method could be integrated into institutional mathematics education. I examined the use of two types of ICT devices: one was the interactive whiteboard, and the other was providing one computer per student.
    In this article, I describe my experiences, gained during one semester, in the class taught with the interactive whiteboard on the one hand, and in the class taught according to the "retrieval-enhanced" learning method on the other hand.
    I compare the effectiveness of the classes to their previous achievements, to each other, and to a class in Hungary.

    Subject Classification: 97U70

  • Gamification in Higher Education
    87-106
    Views:
    827

    The way of thinking and the way of life of the today's children and teenagers have changed radically. Some of the well-established pedagogical methods that were used for decades have become obsolete. Therefore, we need to look for a new method to approach Generations Z and Alpha. Gamification, which has been known since 2010 and means the use of game elements in other areas of life, offers an opportunity to do so.
    In addition to a brief description of gamification, my article shows some possibilities for using it at the university. Furthermore, I investigate the impact of gamification on the student in "Algorithms and Data Structures" university course.

    Subject Classification: 97P30

  • Fostering engineering freshmen’s shifts of attention by using Matlab LiveScript for solving mathematical tasks
    1-14
    Views:
    246

    We designed an experimental path including a summative assessment phase, where engineering freshmen are involved in solving mathematical tasks by using Matlab LiveScripts. We analyzed the students’ answers to a questionnaire about their perceived impact of the use of Matlab on their way to solve mathematical tasks. The main result is that students show shifts of attention from computations to other aspects of problem solving, moving from an operational to a structural view of mathematics.

    Subject Classification: 97U70, 97H60

  • Manipulatives and semiotic tools of Game of Go as playful and creative activity to learn mathematics in early grades in France
    197-206
    Views:
    188

    This research develops resources to teach mathematics in French primary school by using the game of Go. A group of searchers, teachers and go players meet at university to produce teaching resources. These resources are implemented in the classroom. Then the group evaluate this implementation and improve the resources. The aim of this classroom research is to study the opportunities of the game of Go to learn mathematics and to propose a teacher training course to implement the game of Go in French primary schools in accordance with the French syllabus. Game of Go appears as a manipulative and semiotic tool to learn mathematics at primary school.

    Subject Classification: 97D50, 97U60

  • Square root in secondary school
    59-72
    Views:
    271

    Although in Hungary, for decades, the calculation method of the square root of a real number is not in the mathematics curriculum, many of the taught concepts and procedures can be carried out using different square root finding methods. These provide an opportunity for students in secondary school to practice and deepen understand the compulsory curriculum. This article presents seven square-root- nding methods, currently teachable in secondary schools.

    Subject Classification: A33, A34, F53, F54

Database Logos

Keywords