Search
Search Results
-
Modelling and simulation in education and the NetLogo simulation environment
229-240Views:34Just like real experimentation, computer simulation is a method for understanding the world. In the present paper I will demonstrate its possible didactic advantages and application potentials. The displayed simulations, which will be analyzed in a separate section, were all made in the NetLogo environment, one of them by the author himself. -
Approximated Poncelet configurations
163-176Views:34In this short note we present the approximate construction of closed Poncelet configurations using the simulation of a mathematical pendulum. Although the idea goes back to the work of Jacobi ([17]), only the use of modern computer technologies assures the success of the construction. We present also some remarks on using such problems in project based university courses and we present a Matlab program able to produce animated Poncelet configurations with given period. In the same spirit we construct Steiner configurations and we give a few teaching oriented remarks on the Poncelet grid theorem. -
Über die Verwendung von Maple für die Simulation von Mechanismen
21-39Views:25Maple is used to do numerical computation, plot graphs and do exact symbolic manipulations and word processing. This paper demonstrates how Maple can be used for the simulation of mechanisms. This offers the possibility for students to become familiar with this particular section of mathematical modelling. The mechanism under consideration is a so-called F-mechanisms, i.e., a planar parallel 3-RRR robot with three synchronously driven cranks. It turns out that at this example it is not possible to find the poses of the moving triangle exactly by graphical methods with traditional instruments only. Hence, numerical methods are essential for the analysis of motions which can be performed by an F-mechanism. -
A proposed application of Monte Carlo method in teaching probability
37-42Views:38Pupils' misconception of probability often results from lack of experience. Combining the concept of probability and statistics, the proposed application is intended for the teachers of mathematics at an elementary school. By reformulating the task in the form of an adventure, pupils examine a mathematical problem, which is too difficult for them to solve by combinatorial method. By recommending the simulation of the problem, we have sought to provide pupils with valuable experience of experimenting, recording and evaluating data. -
Longest runs in coin tossing. Teaching recursive formulae, asymptotic theorems and computer simulations
261-274Views:39The coin tossing experiment is studied, focusing on higher education. The length of the longest head run can be studied by asymptotic theorems ([3]), by recursive formulae ([10]) or by computer simulations . In this work we make a comparative analysis of recursive formulas, asymptotic results and Monte Carlo simulation for education. We compare the distribution of the longest head run and that of the longest run (i.e. the longest pure heads or pure tails) studying fair coin events. We present a method that helps to understand the concepts and techniques mentioned in the title, which can be a useful didactic tool for colleagues teaching in higher education. -
Interdisciplinary Secondary-School Workshop: Physics and Statistics
179-194Views:55The paper describes a teaching unit of four hours with talented students aged 15-18. The workshop was designed as a problem-based sequence of tasks and was intended to deal with judging dice whether they are regular or loaded. We first introduced the students to the physics of free rotations of rigid bodies to develop the physics background of rolling dice. The highlight of this part was to recognise that cubes made from homogeneous material are the optimal form for six-sided objects leading to equal probabilities of the single faces. Experiments with all five regular bodies would lead to similar results; nevertheless, in our experiments we focused on regular cubes. This reinsures that the participants have their own experience with the context. Then, we studied rolling dice from the probabilistic point of view and – step-by-step – by extending tasks and simulations, we introduced the idea of the chi-squared test interactively with the students. The physics and the statistics part of the paper are largely independent and can be also be read separately. The success of the statistics part is best described by the fact that the students recognised that in some cases of loaded dice, it is easier to detect that property and in other cases one would need many data to make a decision with small error probabilities. A physical examination of the dice under inspection can lead to a quick and correct decision. Yet, such a physical check may fail for some reason. However, a statistical test will always lead to reasonable decision, but may require a large database. Furthermore, especially for smaller datasets, balancing the risk of different types of errors remains a key issue, which is a characteristic feature of statistical testing.
Subject Classification: F90, K90, M50, R30
-
Teaching Java programming using case studies
245-256Views:7The paper deals with the technical background and the pedagogical issues of a specific implementation for the collection, assessment and archiving of the students' assignments written in Java. The implemented system automatically applies object-oriented metrics on the collected works in order to measure the characteristic features of the assignments. Tutors use these results for the detection of plagiarisms and for the selection of outstanding works. The paper interprets the measured values within a real Java course held in the 3rd term of the Informatics bachelor study programme at the technical university. Students have several case studies devoted to the simulation of the ATM (Automatic Teller Machine) at disposal. We conclude that the access to the analyzed pool of case studies, blended with the Sun Learning Connection license from the Sun Microsystems, Inc., is an effective way of teaching programming in Java.