Search

Published After
Published Before

Search Results

  • Task reformulation as a practical tool for formation of electronic digest of tasks
    1-27
    Views:
    120
    Creative thinking as well as thinking itself is being developed at active learning-cognitive activity of students. To make mathematic matter a subject of interest and work of students at classes, it is efficacious to submit it in a form of tasks. The tasks may be set up in a purposeful system of tasks by means of which reaching the teaching goals in the sense of quality and durability of gained knowledge may be more effective. A suitable means for presentation of tasks with their characteristics (as e.g. didactic function and cognitive level) as well as task systems themselves is an electronic digest of tasks as a database. The analysis of textbooks and digests of tasks commonly used at schools in Slovakia shows that they do not include all the types of tasks necessary for setting up complete (in the sense of didactic functions) task systems. One of the most important methods used for formation of the missing tasks is reformulation of tasks. The individual strategies of task reformulation are explained in details on examples in this article.
  • The requirements in statistics education – comparison of PISA mathematical tasks and tasks from the mathematical textbooks in the field of statistics
    263-275
    Views:
    111
    This work presents the results of the analysis of both PISA items and Croatian mathematical textbooks in the field of statistics.
    The analysis shows that PISA's released statistics problems have in many ways different mathematical requirements from the requirements of textbook problems in the statistics chapters, with respect to the mathematical activities, complexity and in the forms of questions. The textbook analysis shows that mathematical examples and problems often require operation and interpretation skills on a reproductive or connections level. Statistics textbook problems are given in the closed-answer form. The results also show that while PISA puts strong emphasis on the statistics field, in the current Croatian curriculum this field is barely present. These discrepancies in requirements and portion of statistics activities surely affect the results of Croatian pupils on PISA assessment in the field of mathematical literacy.
  • The appearance of the characteristic features of the mathematical thinking in the thinking of a chess player
    201-211
    Views:
    143
    It is more and more important in 21st century's education that not only facts and subject knowledge should be taught but also the ways and methods of thinking should be learnt by students. Thinking is a human specificity which is significant both in mathematics and chess. The exercises aimed at beginner chess players are appropriate to demonstrate to students the mathematical thinking of 12-14 year-old students.
    Playing chess is an abstract activity. During the game we use abstract concepts (e.g. sacrifice, stalemate). When solving a chess problem we use logical quantifiers frequently (e.g. in the case of any move of white, black has a move that...). Among the endgames we find many examples (e.g. exceptional draw options) that state impossibility. Affirmation of existence is frequent in a mate position with many moves. We know there is a mate but the question in these cases is how it can be delivered.
    We present the chess problem on beginners' level although these exercises appear in the game of advanced players and chess masters too, in a more complex form. We chose the mathematical tasks from arithmetic, number theory, geometry and the topic of equations. Students encounter these in classes, admission exams and student circles. Revealing the common features of mathematical and chess thinking shows how we can help the development of students' mathematical skills with the education of chess.
  • The shift of contents in prototypical tasks used in education reforms
    203-219
    Views:
    152

    The paper discusses the shift of contents in prototypical tasks provoked by the current educational reform in Austria. The paper starts with the educational backboard of the process of changes in particular with the out tting of the students' abilities in different taxonomies and its implementation in the competence models of Mathematics. A methodological didactical point of view on the process is given additionally. Examples out of a specific collection of math problems which arise from the educational reform are integrated and analysed in the context of educational principles and methods. The discussion ends with a short evaluation of the role of traditional approaches to tasks in the ongoing reform. A bundle of tasks as proof that they are still alive is presented finally.

    Subject Classification: 97B50, 97D40, 97D50

  • The application of modelling tasks in the classroom – why and how? with reflections on an EU teacher training course
    231-244
    Views:
    169
    The aim of the article is to present the concept of mathematical modelling in the classroom. LEMA (Learning and Education in and through Modelling and Applications) was an EU Comenius funded project in which mathematics educators from six countries worked to produce materials to support teachers' professional development. A group of voluntary Hungarian mathematics teachers were taught modelling for a year and we were and still are given feedback continously. The article leads us from the general concept of mathematical modelling to its practice in the classroom. It presents difficulties that teachers have to face when doing modelling lessons and their students' reactions are also mentioned. We present sample tasks from the material of the teacher training course as well as tasks that were created by the participants.
  • Fostering engineering freshmen’s shifts of attention by using Matlab LiveScript for solving mathematical tasks
    1-14
    Views:
    213

    We designed an experimental path including a summative assessment phase, where engineering freshmen are involved in solving mathematical tasks by using Matlab LiveScripts. We analyzed the students’ answers to a questionnaire about their perceived impact of the use of Matlab on their way to solve mathematical tasks. The main result is that students show shifts of attention from computations to other aspects of problem solving, moving from an operational to a structural view of mathematics.

    Subject Classification: 97U70, 97H60

  • Metacognition – necessities and possibilities in teaching and learning mathematics
    69-87
    Views:
    161

    This article focuses on the design of mathematics lessons as well as on the research in mathematics didactics from the perspective that metacognition is necessary and possible.
    Humans are able to self-reflect on their thoughts and actions. They are able to make themselves the subject of their thoughts and reflections. In particular, it is possible to become aware of one’s own cognition, which means the way in which one thinks about something, and thus regulate and control it. This is what the term metacognition, thinking about one’s own thinking, stands for.
    Human thinking tends to biases and faults. Both are often caused by fast thinking. Certain biases occur in mathematical thinking. Overall, this makes it necessary to think slow and to reflect on one’s own thinking in a targeted manner.
    The cognitive processes of thinking, learning and understanding in mathematics become more effective and successful when they are supplemented and extended by metacognitive processes. However, it depends on a specific design of the mathematics lessons and the corresponding tasks in mathematics.

    Subject Classification: 97C30, 97C70, 97D40, 97D50, 97D70

  • Manipulative bulletin board for early categorization
    1-12
    Views:
    111
    According to various researchers categorization is a developmentally appropriate mathematical concept for young children. Classifying objects also relates to every day activities of human life. The manipulative bulletin board (MBB) served as a kind of auxiliary means for approaching categorization by young children. In this article we investigated the kind of MBB that pre-service early childhood education teachers constructed in order to involve children in tasks of categorization, as well as, the way children manipulated these boards in order to categorize items. The MBB, as teaching aids, facilitated the engagement of the children in different categorization processes.
  • Die Stichprobe als ein Beispiel dafür, wie im Unterricht die klassische und die bayesianische Auffassung gleichzeitig dargestellt werden kann
    133-150
    Views:
    104
    Teaching statistics and probability in the school is a new challenge of the Hungarian didactics. It means new tasks also for the teacher- and in service-teacher training. This paper contains an example to show how can be introduced the basic notion of the inference statistics, the point- and interval-estimation by an elementary problem of the public pole. There are two concurrent theories of the inference statistics the so called classical and the Bayesian Statistics. I would like to argue the importance of the simultaneously introduction of both methods making a comparison of the methods. The mathematical tool of our elementary model is combinatorial we use some important equations to reach our goal. The most important equation is proved by two different methods in the appendix of this paper.
  • Designing a 'modern' abacus for early childhood mathematics
    187-199
    Views:
    93
    In this paper, the design of a multi-material, the 'modern' abacus ('modabacus'), for developing early childhood mathematics, is proposed. Presenting the main theories for the design of educational materials as well as similar materials and their educational use, it appears that a new material is needed. The 'modabacus' would be an apparatus which could serve as a multi-material for acting out mathematical tasks as well as a material that could hopefully overcome the limits and restrictions of traditional abacuses and counting boards.
  • Combinatorics – competition – Excel
    427-435
    Views:
    115
    In 2001 the Informatics Points Competition of the Mathematics Journal for Secondary School Students (KÖMAL) was restarted [1]. The editors set themselves an aim to make the formerly mere programming competition a bit more varied. Therefore, every month there has been published a spreadsheet problem, a part of which was related to combinatorics. This article is intended to discuss the above mentioned problems and the solutions given to them at competitions. We will prove that traditional mathematical and programming tasks can be solved with a system developed for application purposes when applying a different way of thinking.
  • Different approaches of interplay between experimentation and theoretical consideration in dynamic geometry exploration: An example from exploring Simson line
    63-81
    Views:
    103
    Dynamic geometry environment (DGE) is a powerful tool for exploration and discovering geometric properties because it allows users to (virtually) manipulate geometric objects. There are two possible components in the process of exploration in DGE, viz. experimentation and theoretical consideration. In most cases, there is interplay between these two components. Different people may use DGE differently. Depending on the specific mathematical tasks and the background of individual users, some approaches of interplay are more experimental whereas some other approaches of interplay are more theoretical. In this paper, different approaches of exploring a geometric task using Sketchpad (a DGE) by three individual participants will be discussed. They represent three different approaches of interplay between experimentation and theoretical consid- eration. An understanding of these approaches may contribute to an understanding on the mechanism of exploration in DGE.
  • Teaching reliability theory with the Computer Algebra System Maxima
    45-75
    Views:
    123
    The use of the Computer Algebra System Maxima as a teaching aid in an MSc module in Reliability Theory is described here. Extracts from student handouts are used to show how the ideas in Reliability Theory are developed and how they are intertwined with their applications implemented in Maxima. Three themes from the lectures are used to illustrate this: (1) Normal Approximations, (2) Markov Modelling, (3) Laplace Transform Techniques.
    It is argued that Maxima is a good tool for the task, since: it is fairly easy to learn & use; it is well documented; it has extensive facilities; it is available for any operating system; and, finally, it can be freely downloaded from the Web. Maxima proves to be a useful tool even for Reliability research for certain tasks. This latter feature provides a seamless link from teaching to research – an important feature in postgraduate education.
Database Logos

Keywords