Metacognition – necessities and possibilities in teaching and learning mathematics
Author
View
Keywords
License
Copyright (c) 2025 Johann Sjuts

This work is licensed under a Creative Commons Attribution 4.0 International License.
How To Cite
Abstract
This article focuses on the design of mathematics lessons as well as on the research in mathematics didactics from the perspective that metacognition is necessary and possible.
Humans are able to self-reflect on their thoughts and actions. They are able to make themselves the subject of their thoughts and reflections. In particular, it is possible to become aware of one’s own cognition, which means the way in which one thinks about something, and thus regulate and control it. This is what the term metacognition, thinking about one’s own thinking, stands for.
Human thinking tends to biases and faults. Both are often caused by fast thinking. Certain biases occur in mathematical thinking. Overall, this makes it necessary to think slow and to reflect on one’s own thinking in a targeted manner.
The cognitive processes of thinking, learning and understanding in mathematics become more effective and successful when they are supplemented and extended by metacognitive processes. However, it depends on a specific design of the mathematics lessons and the corresponding tasks in mathematics.
Subject Classification: 97C30, 97C70, 97D40, 97D50, 97D70
References
- Cohors-Fresenborg, E., & Kaune, C. (2001). Mechanisms of the taking effect of metacognition in understanding processes in mathematics teaching. In Developments in Mathematics Education in German-speaking Countries, Selected Papers from the Annual Conference on Didactics of Mathematics, Ludwigsburg, 2001 (pp. 29–38). SUB.
- Cohors-Fresenborg, E., & Kaune, C. (2007). Modelling classroom discussions and categorising discursive and metacognitive activities. In D. Pitta-Pantazi, & G. Pilippou (Eds.), Proceedings of CERME 5 (pp. 1180–1189). University of Cyprus.
- Cohors-Fresenborg, E., Kramer, S., Pundsack, F., Sjuts, J., & Sommer, N. (2010). The role of metacognitive monitoring in explaining differences in mathematics achievement. ZDM Mathematics Education, 42, 231–244.
- Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. B. Resnick (Ed.), The nature of intelligence (pp. 231–235). Lawrence Erlbaum.
- Hattie, J. (2009). Visible learning. A synthesis of over 800 meta-analyses relating to achievement. Routledge.
- Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus and Giroux.
- Kaune, C., & Cohors-Fresenborg, E. (Hrsg.) (2010). Mathematik Gut Unterrichten – Analyse von Mathematikunterricht bezüglich metakognitiver und diskursiver Aktivitäten. Forschungsinstitut für Mathematikdidaktik.
- Kramarski, B., & Mevarech, Z. R. (2003). Enhancing mathematical reasoning in the classroom: The effects of cooperative learning and metacognitive training. American Educational Research Journal, 40 (1), 281–310.
- Nowińska, E. (2011). A study of the differences between the surface and the deep structures of math lessons. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of CERME 7 (pp. 2777–2786). University of Rzeszów.
- Nowińska, E. (2016). Leitfragen zur Analyse und Beurteilung metakognitivdiskursiver Unterrichtsqualität. Forschungsinstitut für Mathematikdidaktik.
- Nowińska, E. (2020). Assessing how teachers promote students’ metacognition when teaching mathematical concepts and methods. In Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education. Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.
- Nowińska, E. (2021). Diskursive Klassengespräche im Unterricht. MNU Journal, 74 (4), 268–274.
- Nowińska, E. & Sjuts, J. (2019). Von der Oberflächen- zur Tiefenstruktur bei Unterrichtsanalysen. Seminar, 19(2), 112–130.
- Pólya, G. (1945). How to solve it – a new aspect of mathematical method. Princeton University Press.
- Schoenfeld, A. H. (1985). Metacognitive and epistemological issues in mathematical understanding. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 361–380). Lawrence Erlbaum.
- Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334–370). Macmillan.
- Scott, B. M., & Levy, M. G. (2013). Metacognition: Examining the components of a fuzzy concept. Educational Research eJournal, 2 (2), 120–131. doi:10.5838/erej.2013.22.04
- Sjuts, J. (2002). Metacognition in Mathematics Lessons. In Developments in Mathematics Education in German-speaking Countries, Selected Papers from the Annual Conference on Didatics of Mathematics, Bern, 1999 (pp. 76–87). Franzbecker.
- Sjuts, J. (2003). Metakognition per didaktisch-sozialem Vertrag. Journal für Mathematik-Didaktik, 24 (1), 18–40. doi:10.1007/BF03338964
- Sjuts, J. (2021). Schnelles Denken, langsames Denken und die Systemrelevanz von Metakognition. MNU Journal, 74 (1), 54–61.
- Sjuts, J. (2022). Metakognition innerhalb von Aufgaben und Aufgabenbearbeitungen in Mathematik. Zeitschrift für Mathematikdidaktik in Forschung und Praxis, 3, 1–54. doi:10.48648/r2r9-6d11
- Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185 (4157), 1124–1131.
- Van der Stel, M., Veenman, M. V. J., Deelen, K., & Haenen, J. (2010). The increasing role of metacognitive skills in math: A cross-sectional study from a developmental perspective. ZDM Mathematics Education, 42, 219–229. doi:10.1007/s11858-009-0224-2
- Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: conceptual and methodological considerations. Metacognition and Learning, 1 (1), 3–14.
- Vorhölter, K., Krüger, A., & Wendt, L. (2019). Metacognition in mathematical modeling – an overview. In S. A. Chamberlin, & B. Sriraman (Eds.), Affect in mathematical modeling. Advances in mathematics education (pp. 29–51). Springer, Cham. doi:10.1007/978-3-030-04432-9_3