Search
Search Results
1 - 20 of 20 items
-
CALIBRATE and CAS/DGS resources
267-279Views:28The CALIBRATE project was initiated by the EU with the goal of expanding the use of ICT in education by increasing the amount of available learning resources via resource exchange. Although CAS/DGS can be used to easily create high quality learning resources which are also easily adaptable across national boundaries, such resources are difficult to find at CALIBRATE portals. We believe that this is due to CAS/DGS still being rather exotic to most of the people as well as with the common problem of finding existing appropriate resources. A possible solution is for CALIBRATE portals to properly equip existing and forthcoming CAS/DGS resources with suitable metadata and to provide some integration with CAS/DGS tools, enabling both beginners and power users to create and exchange CAS/DGS resources. -
From iteration to one - dimensional discrete dynamical systems using CAS
271-296Views:20In our paper we present the basic didactical framework and approaches of a course on one-dimensional discrete dynamical systems made with the help of Computer Algebra Systems (CAS) for students familiar with the fundamentals of calculus. First we review some didactical principles of teaching mathematics in general and write about the advantages of the modularization for CAS in referring to the constructivistic view of learning. Then we deal with our own development, a CAS-based collection of programs for teaching Newton's method for the calculation of roots of a real function. Included is the discussion of domains of attraction and chaotic behaviour of the iterations. We summarize our teaching experiences using CAS. -
CAS-aided visualization in LATEX documents for mathematical education
1-18Views:26We have been developing KETpic as a macro package of a CAS for drawing fine LATEX-pictures, and we use it efficiently in mathematical education. Printed materials for mathematics classes are prepared under several constraints, such as "without animation", "mass printings", "monochrome", and "without halftone shadings". Because of these constraints, visualization in mathematical education tends to be unsatisfactory. Taking full advantages of LATEX and CAS, KETpic enables us to provide teaching materials with figures which are effective for mathematical education. The effects are summarized as follows:
(1) The plottings of KETpic are accurate due to CAS, and enable students to deduce mathematical laws.
(2) KETpic can provide adequate pictures for students' various interest. For example, when some students who understand a matter try to modify it, KETpic can give them appropriate and experimental figures.
(3) Even though CAS can draw 3D-figures beautifully and automatically, it is expensive for mass printings and the figures are sometimes not easy to understand. Oppositely, 3D-graphics by KETpic are monochrome, but are richly expressive.
In this paper, we give various examples of LATEX-pictures which we drew by using KETpic. For instance, the picture which is used in order to explain the convergence theorem of Fourier series makes it easier for students to understand the idea that function series converge to another function. Also the picture of skeleton is endowed with clear perspective. KETpic gives us great potential for the teaching of combinatorial mathematics. Through these examples, we claim that KETpic should have great possibilities of rich mathematical expressions under the constraints above mentioned. -
CAS as a didactical challenge
379-393Views:33The paper starts with the discussion of a concept of general mathematics education (mathematics education for everyone). This concept views the focus of teaching mathematics in the reduction of the demands in the field of operative knowledge and skills as well as in an increase of the demands in the fields of basic knowledge and reflection. The consequences of this concept are didactically challenging for the use of Computer Algebra Systems (CAS) in the teaching of mathematics. By reducing the operative work we reduce exactly that field in which the original potential of CAS lies. It is shown that in such maths classes the main focus of CAS is on their use as a pedagogical tool, namely as support for the development of basic knowledge and reflection as well as a model of communication with mathematical experts. -
Report on the First Central- and Eastern European Conference on Computer Algebra- and Dynamic Geometry Systems in Mathematics Education, 20-23 June, 2007, Pécs, Hungary
409-413Views:26The Department of Mathematics of the University of Pécs, Pollack Mihály Engineering Faculty organized in the year 2007 a conference on the role of CAS and DGS in the Mathematics education. We discuss the conference's activities. -
Report on "The Computer Algebra and Dynamical Geometry Systems, as the catalysts of the Mathematics education": Conference, 6-7 June, 2003, Pécs, Hungary
259-269Views:10The Department of Mathematics of the University of Pécs, Pollack Mihály Engineering Faculty organized in the year 2003 a conference on the role of CAS and DGS in the Mathematics education. We discuss – based on the authors' abstracts – the conference's activities. -
Teaching Fourier series, partial differential equations and their applications with help of computer algebra system
51-68Views:27In this paper, some examples of Fourier series and partial difference equations will be shown to demonstrate opportunities for CAS use in various circumstances. The well-known white-box – black-box teaching-learning techniques and the modularization will be used to allow the use of the same worksheet in different ways. -
Experiences using CAS and multimedia int teaching vectorcalculus
363-382Views:31The development of informatics brings new opportunities that need reevaluating of the teaching concepts. For this reason we have performed a comprehensive educational development for engineering students. Our main goals were to work out a new educational strategy, to develop the needed package of the subject material, to introduce the strategy in the practice, to analyze and evaluate the experiences. In the developed and adapted teaching-learning strategy the teacher is the organizer, designer and the manager of the process. In this paper we summarize the concepts, the results and experiences of the 3-years-long development. -
Blind versus wise use of CAS
407-417Views:7During my courses for mathematics major students I often use technology linked to the arising problems. In such cases I noted that some students were used to learn just some procedures, which made them able to solve (partially) some problems and when they got the result, they accepted it passively and did not relate it to the initial problem.
In this paper I outline a strategy and investigate some simple exercises about how to develop a critical attitude towards the results obtained by technology in an introductory course to CAS.
I believe that wise use of technology offers an effective method in teaching mathematics, without reducing the students' mental contribution. -
Constructing the disk method formula for the volume obtained by revolving a curve around an axis with the help of CAS
363-376Views:32Calculus concepts should have been taught in a carefully designed learning environment, because these concepts constitute a very important base for almost all applied sciences. The integral, one of the fundamental concepts of Calculus, has a wide application area. This paper focuses on constructing the disk method formula for the volume obtained by revolving a curve around an axis with the help of a CAS.
In this study, a semi-structured interview was carried out. In this interview, we tried to construct the disk method formula.
The levels of constructing the disk method formula in this study are:
• Introducing the concept: evaluating the volume of an Egyptian pyramid.
• Evaluating the volume of a cone obtained by revolution (using Maple worksheet).
• Designing their own ring and evaluating its price (using Maplet).
In this study, the interview has been presented as a dialog between teacher and students. When we look at feedback from students, we see that such a teaching method effects students in a positive way and causes them to gain conceptual understanding directed towards the concepts of approximation and volume. -
The influence of computer on examining trigonometric functions
111-123Views:23In this paper the influence of computer on examining trigonometric functions was analyzed throughout the results questionnaire. The students, as usual, had to examine two trigonometric functions, both were given with the appropriate instructions. Three groups were tested. Two of those three groups were prepared with the help of computer and the third one was taught without computer. From the analysis of the questionnaire it follows that the computer has a great influence on understanding of the connections between the graph and very complex calculations. -
Assimilation of mathematical knowledge using Maple
321-331Views:41For more than four years we have been teaching a Maple course at University of Debrecen for prospective mathematics teachers. The aim of the course is that students get some experience on mathematical visualization with Maple. At the last part of the course the student is provided with a problem of geometrical flavor. Within three or four weeks he/she must obtain a solution. In this paper we present and analyze two of student projects: rotation of the hypercube and drawing of complex functions. The concluding remark is that most of the students will profit from using Maple for such type of problems: it helps to assimilate mathematical knowledge. -
Herschel's heritage and today's technology integration: a postulated parallel
419-430Views:26During the early 20th century, advocacy of a range of mathematical technologies played a central part in movements for the reform of mathematical education which emphasised ‘practical mathematics' and the ‘mathematical laboratory'. However, as these movements faltered, few of the associated technologies were able to gain and maintain a place in school mathematics. One conspicuous exception was a technology, originally championed by the mathematician Herschel, which successfully permeated the school mathematics curriculum because of its:
• Disciplinary congruence with influential contemporary trends in mathematics.
• External currency in wider mathematical practice beyond the school.
• Adoptive facility of incorporation in classroom practice and curricular activity.
• Educational advantage of perceived benefits outweighing costs and concerns.
An analogous perspective is applied to the situation of new technologies in school mathematics in the early 21st century. At a general level, the cases of calculators and computers are contrasted. At a more specific level, the educational prospects of CAS and DGS are assessed. -
Application of computer algebra systems in automatic assessment of math skills
395-408Views:36Mathematics is one of those areas of education, where the student's progress is measured almost solely by testing his or her ability of problem solving. It has been two years now that the authors develop and use Web-based math courses where the assessment of student's progress is fully automatic. More than 150 types of problems in linear algebra and calculus have been implemented in the form of Java-driven tests. Those tests that involve symbolic computations are linked with Mathematica computational kernel through the Jlink mechanism. An individual test features random generation of an unlimited number of problems of a given type with difficulty level being controlled flat design time. Each test incorporates the evaluation of the student's solution. Various methods of grading can be set at design time, depending on the particular purpose that a test is used for (self-assessment or administrative exam). Each test is equipped with the correct solution presentation on demand. In those problems that involve a considerable amount of computational effort (e.g. Gauss elimination), additional special tools are offered in a test window so that the student can concentrate on the method of solution rather than on arithmetic computations. (Another obvious benefit is that the student is thus protected from the risk of frustrating computational errors). Individual tests can be combined into comprehensive exams whose parameters can be set up at design time (e.g., number of problems, difficulty level, grading system, time allowed for solution). The results of an exam can be automatically stored in a database with all authentication and security requirements satisfied. -
Teaching meaningful mathematics with the Computer Algebra System MAXIMA using the example of inequalities
53-65Views:29The paper was originally motivated by the request to accentuate the meaningful contribution of inequalities in Mathematics Education. Additionally nationwide approved competences such as estimating come to the fore when organizing mathematical contents along some central Big Ideas. Not least the integration of computers enriches the reasonable discussion of inequalities by modern well accepted methodological principles. The freeware MAXIMA is used as Computer Algebra System (CAS) representatively. -
Numerical mathematics with GeoGebra in high school
363-378Views:41We have prepared a suite of motivational examples which illustrate numerical methods for equation solving. Fixed point iteration, Newton's method, secant method and regula falsi method are implemented as GeoGebra tools. Our experience in teaching of numerical mathematics in "Jovan Jovanovic Zmaj" high school in Novi Sad is presented. We have tested pupil proficiency in numerical equation solving with and without use of a computer and the results are presented. -
Learning and teaching combinatorics with Sage
389-398Views:44Learning Mathematics is not an easy task, since this subject works with especially abstract concepts and sophisticated deductions. Many students lose their interest in the subject due to lack of success. Computer algebra systems (CAS) provide new ways of learning and teaching Mathematics. Numerous teachers use them to demonstrate concepts, deductions and algorithms and to make learning process more interesting especially in higher education. It is an even more efficient way to improve the learning process, if students can use the system themselves, which helps them to practice the curriculum.
Sage is a free, open-source math software system that supports research and teaching algebra, analysis, geometry, number theory, cryptography, numerical computation, and related areas. I have been using it for several years to aid the instruction of Discrete Mathematics at Óbuda University. In this article I show some examples how representations provided by this system can help in teaching combinatorics. -
Process or object? Ways of solving mathematical problems using CAS
117-132Views:26Graphing and symbol manipulating calculators are now a part of mathematics education in many countries. In Norway symbol manipulating calculators have been used at various exams in upper secondary education. An important finding in mathematics education is the duality of mathematical entities – processes and objects. Building on the theoretical development by Anna Sfard and others, the students' solutions on exam problems in upper secondary education are discussed with reference to procedural and structural knowledge. -
Geometry expressions: an interactive constraint based symbolic geometry system
303-310Views:24Dynamic geometry systems such as Geometers' SketchPad or Cabri are productive environments for the exploration of geometric relationships. They are, however, strictly numeric, and this limits their applicability where the interplay between geometry and algebra are being studied. We present Geometry Expressions – a dynamic symbolic geometry environment. While retaining the ease of use of a typical dynamic geometry environment, Geometry Expressions diverges by using constraints rather than constructions as the primary geometry specification mechanism and by working symbolically rather than numerically. Constraints, such as distances and angles, are specified symbolically. Symbolic measurements for quantities such as distances, angles, areas, locus equations, are automatically computed by the system. We outline how these features combine to create a rich dynamic environment for exploring the interplay between geometry and algebra, between induction and proof.
1 - 20 of 20 items