Search

Published After
Published Before

Search Results

  • Report of Meeting Researches in Didactics of Mathematics and Computer Sciences: January 26-28, 2018 Hajdúszoboszló, Hungary
    131-153
    Views:
    12
    The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Hajdúszoboszló, Hungary from the 26th to the 28th of January, 2018. It was organized by the Doctoral School of Mathematical and Computational Sciences of University of Debrecen.
    The 61 participants – including 47 lectures and 17 PhD students – came from 8 countries, 21 cities and represented 37 institutions of higher and secondary education.
  • Report of Meeting Researches in Didactics of Mathematics and Computer Sciences: January 24-26, 2020 Sárospatak, Hungary
    243-271
    Views:
    108

    The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Sárospatak, Hungary, on the Comenius Campus of the Eszterházy Károly University, from the 24th to the 26th of February, 2020. It was organized by the Doctoral School of Mathematical and Computational Sciences of University of Debrecen and the Eszterházy Károly University. The 76 participants – including 15 PhD students – came from 9 countries, 23 cities and represented 33 institutions of higher and secondary education. There were 4 plenary, 48 session talks and 4 poster presentations in the program.

  • Nice tiling, nice geometry!?!
    269-280
    Views:
    38
    The squared papers in our booklets, or the squared (maybe black and white) pavements in the streets arise an amusing problem: How to deform the side segments of the square pattern, so that the side lines further remain equal (congruent) to each other? More precisely, we require that each congruent transformation of the new pattern, mapping any deformed side segment onto another one, leaves the whole (infinitely extended) pattern invariant (unchanged).
    It turns out that there are exactly 14 types of such edge-transitive (or so-called isotoxal) quadrangle tilings, sometimes with two different forms (e.g. black and white) of quadrangles (see Figure 2). Such a collection of tiling can be very nice, perhaps also useful for decorative pavements in streets, in flats, etc.
    I shall sketch the solution of the problem that leads to fine (and important) mathematical concepts (as barycentric triangulation of a polygonal tiling, adjacency operations, adjacency matrix, symmetry group of a tiling, D-symbol, etc). All these can be discussed in an enjoyable way, e.g. in a special mathematical circle of a secondary school, or in more elementary form as visually attractive figures in a primary school as well.
    My colleague, István Prok [11] developed an attractive computer program on the Euclidean plane crystallographic groups with a nice interactive play (for free download), see our Figures 3-5.
    A complete classification of such Euclidean plane tilings (not only with quadrangles) can be interesting for university students as well, hopefully also for the Reader (Audience). This is why I shall give some references, where you find also other ones.
    Further problems indicate the efficiency of this theory now. All these demonstrate the usual procedure of mathematics and the (teaching) methodology as well: We start with a concrete problem, then extend it further, step-by-step by creating new manipulations, concepts and methods. So we get a theory at certain abstraction level. Then newer problems arise, etc.
    This paper is an extended version of the presentation and the conference paper [7]. The author thanks the Organizers, especially their head Professor Margita Pavlekovic for the invitation, support and for the kind atmosphere of the conference.
  • Integrating Didactic Games in Higher Education: Benefits and Challenges
    1-15
    Views:
    481

    In our paper, we study the reasons for the introduction of didactic games and the way of their application in higher education, especially in teaching mathematics. After describing the main characteristics and needs of Generation Z students, we outline the advantages and drawbacks of gamification and game-based learning, followed by some new aspects to their classification. The idea of device-based grouping arose because the most commonly used methods require IC tools. Gen Zs naturally accept gamified learning materials available on digital and mobile platforms, but we must not forget about traditional games either. In higher education, especially in the case of small-group teaching there should also be room for traditional, specialized didactic games, of which we focus on the benefits of card games.

    Subject Classification: 97C70, 97D20, 97D40, 97U70

  • Dynamic methods in teaching geometry at different levels
    1-13
    Views:
    40
    In this paper we summarize and illustrate our experiences on DGS-aided teaching geometry of the courses "Computer in mathematics" and "Mathematical software" held for students at Juhász Gyula Teacher Training College of University of Szeged. Furthermore, we show examples from our grammar school experiences too. The figures in this paper were made by using Cinderella ([19]) and Euklides ([21]).
  • Comparison of teaching exponential and logarithmic functions based on mathematics textbook analysis
    297-318
    Views:
    32
    Exponential and logarithmic functions are key mathematical concepts that play central roles in advanced mathematics. Unfortunately these are also concepts that give students serious difficulties. In this paper I would like to give an overview – based on textbook analysis – about the Hungarian, Austrian and Dutch situation of teaching exponential and logarithmic functions. This comparison could also provide some ideas for Hungarian teachers on how to embed this topic in their practice in another more "realistic" way.
  • Integrating elements of data science into high-school teaching: Naïve Bayes-classification algorithm and programming in Python
    307-316
    Views:
    100

    Probability theory and mathematical statistics are traditionally one of the most difficult chapters of mathematics to teach. One of the authors, Péter Princz has experience in teaching various topics via computer programming of the problem at hand as a class activity. The proposed method is to involve programming as a didactic tool in hard-to-teach topics. The intended goal in this case is to implement a naïve Bayes-classifier algorithm in Python and demonstrate the machine-learning capabilities of it by applying it to a real-world dataset of edible or poisonous mushrooms. The students would implement the algorithm in a playful and interactive way. The proposed incremental development process aligns well with the spirit of Tamás Varga who considered computers as modern tools of experimental problem solving as early as in the 1960s.

    Subject Classification: 97D40, 97D50, 97K50, 97K99, 97M60, 97P40, 97P50, 97U50

  • Teaching undergraduate mathematics - a problem solving course for first year
    183-206
    Views:
    105

    In this paper we describe a problem solving course for first year undergraduate mathematics students who would be future school teachers.

    Subject Classification: 97B50, 97B70, 97D50, 97D60, 97F60, 97U30

  • Report of Meeting Researches in Didactics of Mathematics and Computer Sciences: January 22-24, 2016 Bratislava, Slovakia
    115-137
    Views:
    30
    The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Bratislava, Slovakia from the 22th to the 24th of January, 2016 at Comenius University in Bratislava. It was organized by the Doctoral School of Mathematical and Computational Sciences of University of Debrecen and the Faculty of Education of Comenius University.
    The 60 participants – including 47 lecturers and 15 PhD students – came from 5 countries, 23 cities and represented 32 institutions of higher and secondary education.
  • What does ICT help and does not help?
    33-49
    Views:
    117

    Year by year, ICT tools and related teaching methods are evolving a lot. Since 2016, the author of the present lines has been looking for a connection between them that supports the development of mathematical competencies and could be integrated into Transcarpathian minority Hungarian language education too. As a doctoral student at the University of Debrecen, I experienced, for example, how the interactive whiteboard revolutionized illustration in Hungarian mathematics teaching, and how it facilitated students' involvement. During my research of teaching in this regard, in some cases, the digital solution had advantageous effects versus concrete-manipulative representation of
    Bruner's too.
    At the same time, ICT "canned" learning materials (videos, presentations, ...) allow for a shift towards repetitive learning instead of simultaneous active participation, which can be compensated for by the "retrieval-enhanced" learning method.
    I have conducted and intend to conduct several research projects in a Transcarpathian Hungarian primary school. In the research so far, I examined whether, in addition to the financial and infrastructural features of the Transcarpathian Hungarian school, the increased "ICT-supported" and the "retrieval-enhanced" learning method could be integrated into institutional mathematics education. I examined the use of two types of ICT devices: one was the interactive whiteboard, and the other was providing one computer per student.
    In this article, I describe my experiences, gained during one semester, in the class taught with the interactive whiteboard on the one hand, and in the class taught according to the "retrieval-enhanced" learning method on the other hand.
    I compare the effectiveness of the classes to their previous achievements, to each other, and to a class in Hungary.

    Subject Classification: 97U70

  • Decomposition of triangles into isosceles triangles I: let the students ask bravely
    163-184
    Views:
    27
    We report about working up an open geometric problem as a mathematical research with pupils of a mathematics camp. This paper shows the didactic aims and the methods we worked with, the didactic results. The second part of this paper gives a general solution of the problem, using pure mathematics and a computer programme.
  • Report of Meeting Researches in Didactics of Mathematics and Computer Sciences: February 1-3, 2019 Stúrovo, Slovakia
    105-129
    Views:
    155

    The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Sturovo, Slovakia from the 1st to the 3th of February, 2019. It was organized by the Doctoral School of Mathematical and Computational Sciences of University of Debrecen. The 63 participants – including 17 PhD students – came from 7 countries, 22 cities and represented 36 institutions of higher and secondary education. There were 4 plenary, 42 session talks and 7 poster presentations in the program.

  • Artworks as illustrations in Hungarian high school Mathematics textbooks
    103-117
    Views:
    68

    Three different series of Hungarian Mathematics textbooks used in grade 9-12 education for the past 30 years have been analysed in this research. Our aim is to show and evaluate how the visual arts have been connected to mathematical ideas in these textbooks. We have applied the six dimensions of evaluation, which have recently been introduced in (Diego-Mantec on, Blanco, Búa Ares, & González Sequeiros, 2019) to categorise the illustrations of the three different series. We show examples for each dimension from the textbooks, and we find that even if the number of artistic illustrations in these coursebooks have significantly increased, in most cases these sporadic examples are not closely related to the mathematical context, mainly used for ornamental purposes to decorate the core text. Based on this classification we conclude that the number of artistic illustrations with underlying math concepts making students' participation more active could and should be significantly increased.

    Subject Classification: 97U20

  • Is it possible to develop some elements of metacognition in a Mathematics classroom environment?
    123-132
    Views:
    94

    In an earlier exploratory survey, we investigated the metacognitive activities of 9th grade students, and found that they have only limited experience in the “looking back” phase of the problem solving process. This paper presents the results of a teaching experiment focusing on ninth-grade students’ metacognitive activities in the process of solving several open-ended geometry problems. We conclude that promoting students’ metacognitive abilities makes their problem solving process more effective.

    Subject Classification: 97D50, 97G40

  • Verification of human-level proof steps in mathematics education
    345-362
    Views:
    13
    Automated mathematics tutorial systems need support from a reasoning module which can verify the correctness of students' contributions. However, current systems typically do not reason at a level similar to the student's reasoning level, and do not fully account for underspecified or ambiguous inputs. We present a domain-independent method for automatically verifying correct proof steps and detecting standard reasoning errors. We use a depth limited BFS proof search to determine and maintain multiple possible interpretations consistent with the given proof step, we are able to resolve or otherwise propagate underspecification and ambiguity which occurs due to unrestricted user input. Our approach has been implemented in ΩmegaCoRe.
  • A computational thinking problem-thread for grade 7 students and above from the Pósa method
    101-110
    Views:
    97

    Lajos Pósa has been developing his “learning through discovery” (Győri & Juhász, 2018) method since 1988. His weekend math camps are focused on fostering problem-solving skills and high-level mathematical-thinking skills in gifted students from grades 7 to 11. One of the core aspects of the method is the structure of the problems, all problems are part of a complex, intertwined, and rich network. In this article we analyze a computational thinking problem-thread and its role in the camps’s network of problems (Gosztonyi, 2019), and show some aspects of the method. The insights gained using this method can be useful in other contexts. The possible adaptation of the method to secondary and high schools is briefly discussed as well.

    Subject Classification: 97D40

  • Looking back on Pólya’s teaching of problem solving
    207-217
    Views:
    234

    This article is a personal reflection on Pólya's work on problem solving, supported by a re-reading of some of his books and viewing his film Let Us Teach Guessing. Pólya's work has had lasting impact on the goals of school mathematics, especially in establishing solving problems (including non-routine problems) as a major goal and in establishing the elements of how to teach for problem solving. His work demonstrated the importance of choosing rich problems for students to explore, equipping them with some heuristic strategies and metacognitive awareness of the problem solving process, and promoting 'looking back' as a way of learning from the problem solving experience. The ideas are all still influential. What has changed most is the nature of classrooms, with the subsequent appreciation of a supporting yet challenging classroom where students work collaboratively and play an active role in classroom discussion.

    Subject Classification: 97D50, 97A30

  • "On the way" to the function concept - experiences of a teaching experiment
    17-39
    Views:
    80

    Knowing, comprehending and applying the function concept is essential not only from the aspect of dealing with mathematics but with several scientific fields such as engineering. Since most mathematical notions cannot be acquired in one step (Vinner, 1983) the development of the function concept is a long process, either. One of the goals of the process is evolving an "ideal" concept image (the image is interrelated with the definition of the concept). Such concept image plays an important role in solving problems of engineering. This study reports on the beginning of a research aiming the scholastic forming of the students' function concept image i.e. on the experiences of a "pilot" study. By the experiment, we are looking for the answer of the following question: how can the analysis of such function relations be built into the studied period (8th grade) of the evolving process of the function concept that students meet in everyday life and also in engineering life?

    Subject Classification: D43, U73

  • Recalling calculus knowledge
    55-70
    Views:
    35
    The main purpose of educational system is not only that the students perform well at the exam, but to remember the learnt material to some degree some time after the learning. This paper investigates students' retained knowledge, focusing mainly on topics concerning derivatives and differentiation, and examines the effect of re-learning in a short period of time. Results indicate that retained knowledge should be taken into consideration in instructional design and curriculum planning for the sequencing courses.
  • Typical mistakes in Mental Cutting Test and their consequences in gender differences
    385-392
    Views:
    21
    Spatial ability of first year university students is measured and evaluated in this paper. We used standard Mental Cutting Test (MCT), where a body is given by perspective view and correct cross section has to be chosen. While gender differences in MCT are reported by several papers including our earlier results, much less known are the reasons of these differences. Here we show that typical mistakes (answers to problems which are close to be correct) can be one of the possible reasons, since female students made typical mistakes in some cases more frequently than males.
  • Mapping students’ motivation in a problem oriented mathematics classroom
    111-121
    Views:
    69

    This research focuses on mapping students’ motivation by implementing problem-solving activities, namely how the problem-oriented approach affects the students’ commitment, motivation, and attitude to learning. As a practicing teacher, the author faced difficulties with motivation and sought to improve her practice in the form of action research as described in this paper. Based on the literature, the author describes sources of motivation as task interest, social environment, opportunity to discover, knowing why, using objects, and helping others. The author discusses the effect of problem-oriented teaching on the motivation of 7th-grade students. In this paper, the results of two lessons are presented.

    Subject Classification: 97C20, 97D40, 97D50, 97D60

  • The effects of chess education on mathematical problem solving performance
    153-168
    Views:
    52
    We investigate the connection between the "queen of sciences" (mathematics) and the "royal game" (chess) with respect to the development of mathematical problem solving ability in primary school education (classes 1-8, age 7-15) where facultative chess education is present. The records of the 2014 year's entrance exam in mathematics – obligatory for the enrollment to secondary grammar schools in Hungary – are compared for the whole national database and for the results of a group containing chess-player students. The problems in the tests are classified with respect to the competencies needed to solve them. For the evaluation of the results we used standard mathematical statistical methods.
  • The shift of contents in prototypical tasks used in education reforms
    203-219
    Views:
    94

    The paper discusses the shift of contents in prototypical tasks provoked by the current educational reform in Austria. The paper starts with the educational backboard of the process of changes in particular with the out tting of the students' abilities in different taxonomies and its implementation in the competence models of Mathematics. A methodological didactical point of view on the process is given additionally. Examples out of a specific collection of math problems which arise from the educational reform are integrated and analysed in the context of educational principles and methods. The discussion ends with a short evaluation of the role of traditional approaches to tasks in the ongoing reform. A bundle of tasks as proof that they are still alive is presented finally.

    Subject Classification: 97B50, 97D40, 97D50

  • Solving mathematical problems by using Maple factorization algorithms
    293-297
    Views:
    33
    Computer algebra gives methods for manipulating mathematical expression. In this paper we use the Maple software to solve some elementary problems. Computeraided approach in the instruction of mathematics helps to impart problem solving skills to students.
  • The time spent on board games pays off: links between board game playing and competency motivation
    119-131
    Views:
    147

    The impact playing has on the development of thinking is an important topic of psychology of learning, brain research and mathematics didactics.
    Our research is also connected to the aforementioned topic. We investigated the effects of playing board games on competence motivation and the development of mathematical competencies.
    In this paper, we present the results of an experiment carried out in a secondary school class.
    The experimental group spent one of three weekly mathematics lessons playing board games.
    Apart from the several advantages of playing games in general, we can conclude that, based on the results of the national competence measurement, the mathematical competence of the students developed properly.
    The readiness and the progress of the pupils were compared on the basis of input and output tests and an initial knowledge measurement and, at the same time, we compared their level of mathematical competence with the results of the national competence
    measurement.

    Subject Classification: 97C70, 97D40