Search

Published After
Published Before

Search Results

  • Many paths lead to statistical inference: Should teaching it focus on elementary approaches or reflect this multiplicity?
    259-293
    Views:
    222

    For statistics education, a key question is how to design learning paths to statistical inference that are elementary enough that the learners can understand the concepts and that are rich enough to develop the full complexity of statistical inference later on. There are two ways to approach this problem: One is to restrict the complexity. Informal Inference considers a reduced situation and refers to resampling methods, which may be completely outsourced to computing power. The other is to find informal ways to explore situations of statistical inference, also supported with the graphing and simulating facilities of computers. The latter orientates towards the full complexity of statistical inference though it tries to reduce it for the early learning encoun-ters. We argue for the informal-ways approach as it connects to Bayesian methods of inference and allows for a full concept of probability in comparison to the Informal Inference, which reduces probability to a mere frequentist concept and – based on this – restricts inference to a few special cases. We also develop a didactic framework for our analysis, which includes the approach of Tamás Varga.

    Subject Classification: 97K10, 97K70, 97K50, 97D20

  • Teaching probability using graph representations
    103-122
    Views:
    158
    The main objective of this paper is to present an elementary approach to classical probability theory, based on a Van Hiele type framework, using graph representation and counting techniques, highly suitable for teaching in lower and upper secondary schools. The main advantage of this approach is that it is not based on set theoretical, or combinatorial knowledge, hence it is more suitable for beginners and facilitates the transitions from level 0 to level 3. We also mention a few teaching experiences on different levels (lower secondary school, upper secondary school, teacher training, professional development, university students) based on this approach.
  • Probabilistic thinking, characteristic features
    13-36
    Views:
    113
    This paper is the first step in a series of a general research project on possible development in probability approach. Our goal is to check with quantitative methods how correct our presumptions formulated during our teaching experience were. In order to get an answer to this question, we conducted a survey among third-year students at our college about their general and scientific concepts as well as about the way they typically think.
Database Logos

Keywords