Search
Search Results
-
Rational errors in learning fractions among 5th grade students
347-358Views:148Our paper focuses on empirical research in which we map out the errors in learning fractions. Errors are often logically consistent and rule-based rather than being random. When people face solving an unfamiliar problem, they usually construct rules or strategies in order to solve it (Van Lehn, 1983). These strategies tend to be systematic, often make ‘sense’ to the people who created them but often lead to incorrect solutions (Ben-Zeev, 1996). These mistakes were named rational errors by Ben-Zeev (1996). The research aims to show that when learning fractions, students produce such errors, identified in the literature, and that students who make these kinds of mistakes achieve low results in mathematics tests. The research was done among 5th-grade students.
Subject Classification: 97C10, 97C30, 97C70, 97D60, 97D70, 97F50
-
Teaching fractions at elementary level in the light of Hungarian mathematics textbooks in Romania
149-159Views:155According to the new curriculum in Romania, fractions are introduced in the second grade. The present study analyses Hungarian elementary mathematics textbooks on the topic of fractions focusing on the types of tasks in the textbooks, the significance of representations and the proportion of word problems. Additionally, the paper presents a questionnaire-based research on teachers’ opinion regarding the adequacy and sufficiency of the digital materials and exercises related to fractions in the textbooks.
Subject Classification: 97F40, 97F80, 97U20, 97U50
-
Conversion between different symbolic representations of rational numbers among 9th-grade students
29-45Views:186Our research involved nearly 800 ninth-grade secondary school students (aged 14-15) during the first weeks of the 2023/2024 school year. Less than 40% of students solved the text problems related to common fractions and percentages correctly. In terms of student solutions, pupils showed a higher success rate when the text of the problem contained common fractions, and the solution had to be given as a percentage. In this case, the success rate of switching between different symbolic representations of rational numbers (common fraction, percentage) was also higher. Observation of the methods used to solve also suggests that the majority of students are not flexible enough when it comes to switching between different representations.
Subject Classification: 97F80, 97D70
-
Some problems of solving linear equation with fractions
339-351Views:100The aim of this paper is to offer some possible ways of solving linear equations, using manipulative tools, in which the "−" sign is found in front of an algebraic fraction which has a binomial as a numerator. It is used at 8th grade. -
A new approach for explaining Rhind's Recto – and its utility in teaching
337-355Views:96The Recto is a table in the Rhind Mathematical Papyrus (RMP) of ancient Egypt containing the unit fraction decompositions of fractions 2/n (3 ≤ n ≤ 101, n odd). To the question how (and why) the decompositions were made, there exists no generally accepted answer. The fact that in some other sources of Egyptian mathematics decompositions different from those in Recto exist makes the problem more difficult.
Researchers normally try to find the answer in some formulas by which the entries of the table were calculated [see e.g. 1, 42]. We are convinced that the correct answer is not hidden in formulas but in the characteristics of Egyptian mathematics namely those of fraction and division concepts. To study them is important not only from historical point of view but also from methodological one: how to develop fraction concept and how to make division easier.