Search

Published After
Published Before

Search Results

  • The formation of area concept with the help of manipulative activities
    121-139
    Views:
    34
    Examining the performance of Hungarian students of Grades 4-12 in connection with area measurement, we found many deficiencies and thinking failures. In the light of this background, it seems reasonable to review the educational practice and to identify those teaching movements that trigger the explored problems and to design a teaching experiment that tries to avoid and exclude them. Based on result we make recommendations for the broad teaching practice. In our study we report on one part of a multi-stage teaching experiment in which we dealt with the comparison of the areas of figures, the decomposition of figures and the special role of the rectangle in the process of area concept formation. The conclusion of the post-test is that manipulative activities are important and necessary in Grades 5 and 6, more types of equidecomposition activities are needed and the number of measuring tasks with grid as a tool should also be increased.
  • Report of Meeting Researches in Didactics of Mathematics and Computer Sciences: January 24-26, 2020 Sárospatak, Hungary
    243-271
    Views:
    105

    The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Sárospatak, Hungary, on the Comenius Campus of the Eszterházy Károly University, from the 24th to the 26th of February, 2020. It was organized by the Doctoral School of Mathematical and Computational Sciences of University of Debrecen and the Eszterházy Károly University. The 76 participants – including 15 PhD students – came from 9 countries, 23 cities and represented 33 institutions of higher and secondary education. There were 4 plenary, 48 session talks and 4 poster presentations in the program.

  • Teaching of problem-solving strategies in mathematics in secondary schools
    139-164
    Views:
    8
    In the Hungarian mathematics education there is no explicit teaching of problem-solving strategies. The best students can abstract the strategies from the solutions of concrete problems, but for the average students it is not enough. In our article we report about a developmental research. The topic of the research was the explicit teaching of two basic strategies (forward method, backward method). Based on our experiences we state that it is possible to increase the effectivity of students' problemsolving achievement by teaching the problem-solving strategies explicitly.
  • Decomposition of triangles into isosceles triangles I: let the students ask bravely
    163-184
    Views:
    27
    We report about working up an open geometric problem as a mathematical research with pupils of a mathematics camp. This paper shows the didactic aims and the methods we worked with, the didactic results. The second part of this paper gives a general solution of the problem, using pure mathematics and a computer programme.
  • On an international training of mathematically talented students: assets of the 20 years of the “Nagy Károly Mathematical Student-meetings”
    77-89
    Views:
    33
    The focus of this paper is to present the gems of the "Nagy Károly Mathematical Student-meetings" in Rév-Komárom (Slovakia) from 1991 to 2010. During these 20 years there was done a lot of work to train mathematically talented students with Hungarian mother tongue and to develop their mathematical thinking, and to teach them problem solving and heuristic strategies for successful acting on the competitions. We collected the most interesting problems and methods presented by the trainer teachers.
  • How to use our own program evaluation system to streamline teaching computer programming
    73-80
    Views:
    35
    During computer programming contests the use of automatic evaluation systems is becoming more and more frequent. In said systems the contestants are allowed to submit their source code that will be evaluated with the results reported back to them. According to this report the contestant can realise for what test cases his program works properly and for what cases does it fail. This kind of on-line evaluation system is used for example in the International Olympiad in Informatics (IOI), in the final round of the Nemes Tihamér National Programming Competition, and in the Selection Competition for IOI in Hungary. A contest management system can be used for other purposes apart from this singular example. A well-developed evaluation system can foster not only the teaching of computer programming and the preparation of students for programming contests but the teacher's work as well.
  • Expressiveness of programming languages and environments: a comparative study
    111-141
    Views:
    32
    In written and oral communication tools, the support of the understanding of our message have an important role: we can increase the expressiveness and the level of understanding of our topic by approaching it in several ways, i.e. in written methods by highlighting the important parts; in oral by changing tone and other elements of non-verbal communication. In this paper programming languages and developing environments are compared with each other in terms of their methods and their level of support to the solution of programming tasks.
    There is a need to have these tools in programming and, of course, in teaching programming. What are the factors that define the distinctness and the legibility of a program? What are the basic principles which give an instrument in programmers' and students' hands in order to create a properly working program from already existing algorithms in the most efficient way? We search for the answers to these questions in this paper.
  • GeoGebra in mathematics teaching
    101-110
    Views:
    45
    GeoGebra is a dynamic mathematics software which combines dynamic geometry and computer algebra systems into an easy-to-use package. Its marvel lies in the fact that it offers both the geometrical and algebraic representation of each mathematical object (points, lines etc.). The present article gives a sample of the potential uses of GeoGebra for mathematics teaching in secondary schools.
  • Experiences in the education of mathematics during the digital curriculum from the perspective of high school students
    111-128
    Views:
    170

    Due to the COVID-19 epidemic, Hungarian schools had to switch to a digital curriculum for an extended period between 2019 and 2021. In this article, we report on the experiences regarding the education of mathematics during the digital curriculum in the light of the reinstated on-site education, all through the eyes of high school students. Distance education brought pedagogical renewal to the lives of many groups. Students were asked about the positives and negatives of this situation.

    Subject Classification: 97C90

  • Organizing programming contests
    73-99
    Views:
    28
    This paper aims to summarize my experience in organizing programming contests. It is an overview of those questions that should be raised and decisions that should be made by organizers, teachers and computer system administrators, who participate "on the other side" of such events.
  • Levels of students' understanding on infinity
    317-337
    Views:
    24
    Here we report some results of a two-year study for grades 5-6 and 7-8 (during the academic years 2001-03). The study included a quantitative survey for approximately 150 Finnish mathematics classes out of which 10 classes were selected to a longitudinal part of the study. Additionally, 40 students from these classes participated also a qualitative study. This paper will focus on students' understanding of infinity and the development of that understanding. The results show that most of the students did not have a proper view of infinity but that the share of able students grew, as the students got older.
  • The use of different representations in teaching algebra, 9 th grade (14-15 years old)
    29-42
    Views:
    33
    Learning Algebra causes many difficulties for students. For most of them Algebra means rote memorizing and applying several rules without understanding them which is a great danger in teaching Algebra. Using only symbolic representations and neglecting the enactive and iconic ones is a great danger in teaching Algebra, too. The latter two have a primary importance for average students.
    In our study, we report about an action research carried out in a grade 9 class in a secondary school in Hungary.The results show that the use of enactive and iconic representations in algebra teaching develops the students' applicable knowledge, their problem solving knowledge and their problem solving ability.
  • Algorithmics of the knapsack type tasks
    37-71
    Views:
    28
    We propose a new kind of approach of the teaching of knapsack type problems in the classroom. We will remind you the context of the general knapsack-task and we will classify it, including the two most popular task variants: the discrete and the continuous one. Once we briefly present the solving algorithm of the continuous variant, we will focus on the solving of the discrete task, and we will determine the complexity of the algorithms, looking for different optimizing possibilities. All these issues are presented in a useful way for highschool teachers, who are preparing students in order to participate in different programming contests.
  • Transition from arithmetic to algebra in primary school education
    225-248
    Views:
    36
    The main aim of this paper is to report a study that explores the thinking strategies and the most frequent errors of Hungarian grade 5-8 students in solving some problems involving arithmetical first-degree equations. The present study also aims at identifying the main arithmetical strategies attempted to solve a problem that can be solved algebraically. The analysis focuses on the shifts from arithmetic computations to algebraic thinking and procedures. Our second aim was to identify the main difficulties which students face when they have to deal with mathematical word problems. The errors made by students were categorized by stages in the problem solving process. The students' written works were analyzed seeking for patterns and regularities concerning both of the methods used by the students and the errors which occured in the problem solving process. In this paper, three prominent error types and their causes are discussed.
  • The single-source shortest paths algorithms and the dynamic programming
    25-35
    Views:
    31
    In this paper we are going to present a teaching—learning method that help students look at three single-source shortest paths graph-algorithms from a so called "upperview": the algorithm based on the topological order of the nodes, the Dijkstra algorithm, the Bellman-Ford algorithm. The goal of the suggested method is, beyond the presentation of the algorithms, to offer the students a view that reveals them the basic and even the slight principal differences and similarities between the strategies. In order to succeed in this object, teachers should present the mentioned algorithms as cousin dynamic programming strategies.
  • Report of the conference "Connecting Tamás Varga’s Legacy and Current Research in Mathematics Education": November 6-8, 2019, Budapest, Hungary
    5-8
    Views:
    92

    On the occasion of the 100th anniversary of the birth of the Hungarian mathematics educator, didactician and reform leader Tamás Varga, a conference on mathematics education has been organized in November 2019 and held at the Hungarian Academy of Science.