Search
Search Results
-
Changing of carbohydrates by inoculation of Pseudomonas savastanoi pv. phaseolicola oil bean lines with different resistance
82-85.Views:442The Pseudomonas savastanoi pv. phaseolicola (PS) is one of the most significant stressors of bean (Phaseolus vulgaris L.). Chemical and agrotechnical treatments have minor importance, so breeding has great part in the protection against this pathogen. Most of the cultivars are susceptible to PS. The genetic background of resistance in the plant is a complex system. Leaf resistance is a monogenic system, but there are some modifier genes. The pathogen species can be divided into different races.
To understand the functioning of this resistance gene, experiments were carried out using bean varieties with different genotypes and near isogenic lines of bean. Eight lines were tested. Our main objective was to test bean lines with PS with high virulence.
The experiment was made in greenhouse and on field. The virulent bacterium strain has been isolated in Hungary.
The changes of carbohydrates were tested after infection. In homeostasis the level of carbohydrates (especially glucose and fructose) were higher in susceptible lines. In case of artificial and natural infection the decrease of glucose were more significant in susceptible lines than in resistant lines. In the leaf samples from systemic chlorosis the level of this carbohydrate increased.
These changes are connected with the level of resistance, but more experiments are needed to verify this assumption.
-
Identification of ripening-related genes in strawberry fruit by cDNA-AFLP
33-41.Views:248An RNA fingerprinting study of strawberry receptacle and achene tissue was performed to identify candidate genes involved in fruit ripening. Quantitative cDNA-AFLP was used to detect differential gene expression in green, white, pink and red stages of fruit ripening. Based on hierarchical average linkage clustering the differentially expressed genes formed three major groups, genes expressed only in green receptacle, genes expressed mainly in white, pink and red receptacle, and in achene. 130 transcript-derived fragments (TDFs) were isolated and sequenced. Most TDFs did not show any homology to sequences with known functions, others were homologous to genes involved in oxidative stress response, signal transduction, regulation of development and cell-wall metabolism. Novel genes, so far not associated with strawberry ripening and ripening in general, were identified, such as genes encoding a bHLH protein, putative nitrilase-related protein, putative HD-zip protein. The differential pattern of gene expression draws the attention to the significance of ripening induced-or repressed promoters in strawberry fruit, whose isolation and characterization can be useful tool for functional genomics. For this purpose nine cDNA-AFLP fragments related either to ontogeny or senescing were completed with 5'UTR aiming at more precise annotation and future promoter isolation. Although tens of potentially important transcriptome changes were identified, the function of many ripening induced genes remain unknown.
-
Transmethylation and the general defense reaction of plants
35-40.Views:280Plant breeding for resistance, namely building specific resistance genes into cultivated plants to ensure resistance against certain pathogen species, is a several-decade-long practice. While looking for purposes of failures appearing during the cultivation of varieties created in this way, a plant feature that ensures non-specific reactions against effects which evoke biotic stress attracted our attention. We named this plant defense form the general defense reaction. The general defense reaction is a fundamental attribute of the plant kingdom, fulfils the role of plant immune system and manifests itself in cell enlargement and cell division. Plants with a high level general defense reaction endure abiotic stresses as well.
In studying the biochemical background of the interaction of the general defense reaction and transmethylation, we found that transmethylation has important role in warding off both biotic and abiotic stresses. According to our observations, plants possessing high level general defense system are suitable for thorough examination of the process and plant physiological role of transmethylation. Biochemical studies also strengthened our observation, which has been taken on the basis of phenotype, that the general defense system can not be ignored during future plant breeding.
-
Preliminary evaluation of breeding perspectives of Ukrainian sweet cherry cultivars: nutraceutical properties and self-incompatibility
7-11.Views:749Some traditional sweet cherry cultivars of Ukrainian origin may represent perspective material for Hungarian cherry breeding. A total of eight cultivars analysed represent great diversity in several phenotypic traits including fruit ripening time or fruit flesh colour. Considerable differences in the anthocyanin content may result in different antioxidant capacity of fruits. In the present study, we used ferric reducing antioxidant power (FRAP) and total phenolic content (TPC) assays to characterize fruits’ nutraceutical properties. These values were compared with the respective values measured for eight commercial cultivars grown in Hungary. The average of FRAP and TPC values was higher for the Ukrainian cherries compared with commercial cultivars suggesting they might be included in functional breeding programs. Since, cherry is a self-incompatible species, the determination of S-genotype is required for both breeding and successful cultivar association in commercial orchards. Complete or partial S-genotypes were determined for 5 and 3 cultivars, respectively.
-
Impact of foliar fungi on dogroses
23-30.Views:290Wild roses of the section Caninae, commonly known as dogroses, have been described as more disease tolerant than ornamental roses and could therefore become valuable for breeding improved rose cultivars. Two fields with dogroses, one with plants obtained by open pollination in wild populations, and one with plants obtained from intra- and interspecific crosses, were evaluated for blackspot, powdery mildew, rust and leafspots in the autumn of 2005. Symptoms of the different fungi on different dogrose species were carefully evaluated in a microscope and documented by photography. Interestingly, almost no symptoms of powdery mildew were found in either field, although the fungus infected wild roses of a different section in a field closeby. Surprisingly few symptoms were found also of blackspot, and they differed considerably from those found on ornamental cultivars, indicating a lower susceptibility in dogroses. The most important fungal disease in 2005 was rust, followed by leafspot symptoms. The latter were apparently caused by Sphaceloma rosarum and Septoria rosae which can be properly discriminated only in a microscope. The investigated dogrose species and their progeny groups varied significantly in disease susceptibility and in the appearance of encountered symptoms but there was no evidence of major resistance genes, except possibly in Rosa rubiginosa which did not show any symptoms of Septoria. In 2006, a subset of the plant material in Field 1 was evaluated to check for consistency between the years. Leafspots had overtaken rust as the most important disease but results were otherwise very similar to those of 2005.
-
Molecular diversity of Hungarian melon varieties revealed by RAPD markers
11-13.Views:284RAPD markers were used to reveal genetic diversity between nine varieties of Cucumis melo L. and to identify the studied varieties. Of the 60 primers tested 12 primers produced polymorph patterns. A set of 4 primers was sufficient for distinction the nine investigated melon varieties.
-
Production of transgenic carnation with antisense ACS (1-aminocyclopropane44-carboxy late synthase) gene
104-107.Views:360Dianthus chinensis and Dianthus caryophyllus varieties were tested for shoot regeneration from leaf and petal explants and transformed with Agrobacterium tuniefaciens strains (EHA 105 and LBA 4404) harbouring an apple derived ACS cDNA in antisense orientation in order to reduce ethylene production and influence the ethylene dependant traits in carnation. After transformation regenerating shoots were selected on MS medium containing 50-75-100-125-150 mg/1 kanamycin and supplemented with 1 mg/1 BA, 0.2 mg/1 NAA. Transgene integration was proved by PCR analysis with npt II spcific primers followed by Southern hybridisation of DNA isolated from green shoots on medium containing 150 mg/1 kanamycin. Several putative transformants were subjected to RT-PCR in order to examine the npt 11 expression at mRNA level. Both the transformant and the non-transformant plants were potted into glasshouse to observe the effect of changed ethylene production on flowering time, petal senescence and vase life.
-
RAPD analysis of grapevine hybrids and cultivars
63-66.Views:329Utilization of the Randomly Amplified Polymorphic DNA (RAPD) technique as a molecular marker was tested to investigate the relationships between some representative grapevine cultivars and hybrids established at the Department of Genetics and Plant Breeding (CUB), to distinguish clones as well as to characterize various hybrids between species or cultivars and their parents. Vitis vinifera cultivars were easily and successfully distinguished by the RAPD technique and they were grouped according to the traditional taxonomic classification. RAPD patterns of the examined Pinot gris clones proved to be completely identical. Number of generations was reflected by the value of genetic distance of the examined hybrids. Genetic identity of parents and their offsprings was influenced by the selection applied in the process of plant breeding. Parental phenotypic and morphologic characteristics showed high degree of segregation in hybrids, but RAPD analysis revealed that their genetic similarity is considerable. The three Vitis anntrensis clones were properly discriminated from every cultivar and hybrid of Vitis vinifera, i.e. hybrids are much closer to the cultivated grapevine than to V. anzurensis due to the phenotypic selection carried out during the life-cycle of one or two generations.
-
Down-regulation of ethylene production in carnation (Dianthus Caryphyllus L.) by an apple derived ACC-cDNA
101-104.Views:215Transgenic carnations were produced with an apple derived antisense ACC-synthase cDNA. Transgenic carnation regenerants were potted in glasshouse. All transformed plants showed normal growth and were true-to-type. Ethylene production — measured at full opening stage — lowered by 30-60 %, no plant with 100 % decrease was identified. The vase-life has been observed for 5 years. 38 % of the transformant carnations showed a higher a relative value in days by more than 2 days to 6 days. Twenty six plants were found exhibiting the most marked alterations in the tested trait. In these plants ethylene production decreased by 37-67 %, they have longer vase-life (by 4 days or more). Since the fragrance variety 'Bíbor' was the plant material for genetic modification of vase-life, this trait has been conserved after transformation in spite of the fact that the position of transgene integration cannot be directed.
-
Production of transgenic carnation with a heterologous 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase bifunctional enzyme cDNA
75-79.Views:226Transgenic carnations were produced with a modified mammalian bifunctional enzyme cDNA coding 6-phosphofructo-2- kinaseffructose 2,6-bisphosphatase. Relative activity of this enzyme determines the fructose 2,6-bisphosphate (fru 2,6-P2) cytosolic concentration. This metabolite — as a signal molecule — is one of the carbohydrate metabolism regulators. The regenerated Dianthus chinensis and Dianthus caryophyllus shoots were selected on MS basal medium containing 150 mg/1 kanamycin. Transgene integration was proven by PCR analysis with cDNA specific primers followed by Southern hybridization of DNA isolated from selected green shoots, which survived on kanamycin containing medium, so 3 D. chinensis and 20 D. caryophyllus transgenic plants were produced. Transgene expression were examined by RT-PCR. Transformed and control plants were potted in glasshouse to evaluate the effect of modified fru 2,6-P2 on development, growth and carbohydrate metabolism.
-
Optimization of RNA isolation from stone fruits at different ripening stages
101-104.Views:402This study was conducted to select the most appropriate RNA isolation method that can be used successfully in case of stone fruits. The changing pattern of gene expression during the ripening process of stone fruits may elucidate the molecular background of several phenotypical or phytochemical alterations present among different genotypes. Our laboratory aims to study the expression of genes encoding for enzymes that catalyze crucial steps in the flavonoid biosynthesis pathway. RNA isolation from fruit mesocarp is a challanging task due to high levels of sugars and polyphenolics accumulating during fruit development. Therefore, at first, the optimal techniques eligible for RNA isolation from fruit tissues at different ripening stages must be selected. Our study compares three different RNA isolation protocols and describes their potential applicability according to different fruit species and ripening stages.
-
Shoot induction and plant regeneration from cotyledon segments of the muskmelon variety "hógolyó"
61-64.Views:276Cotyledonary segments of the casaba type muskmelon variety "Hógolyó" were used to induce organogenesis. Fifty different hormone combinations were applied to enhance the induction of shoot formation on the edge of the segments. The phases of organogenesis were followed with light- and scanning electron microscope. Shoot induction was achieved with high frequency. The shoots were transferred to hormone free media for root induction. The rooted plantlets were planted out to soil.
NAA was feasible and the method can be applied in transformation experiments.
-
Grape variety comparison of different stress tolerance based on the quantitative measurement of carbohydrates
37-40.Views:292The analyses of various host-pathogen relationships have established the response reaction roles of carbohydrates — especially monosaccharides — measurable in the vegetal parts of the host. Published results also provide information concerning the way various pathogens utilize carbohydrates and concerning the carbohydrates pathogens prefer out of the "selection" provided by the host plant. The role of carbohydrates in the response reactions to abiotic stress has been studied on several plant species as well — currently, too, it is an often discussed area of research. The above-mentioned results form the basis of our intention to study the connection between susceptibility to grey mould and the quantity of measurable carbohydrates in the leaves of grape varieties of various stress tolerance levels.
-
Development of microsatellite markers for Rhodiola rosea
37-42.Views:372Rhodiola rosea L. is an important adaptogen medicinal plant. In this study two new microsatellite markers were developed. The assessment of the genetic diversity of R. rosea has recently started with molecular markers, but only a few species-specific microsatellite markers have been published so far. However the small number of markers allows only a limited insight into the genetic variability of the species therefore the aim of our work was to develop new microsatellite markers for R. rosea with a microsatellite enrichment library technique. Genomic DNA was cleaved with an endonuclease enzyme followed by adaptor ligation and PCR amplification. DNA fragments that contained microsatellites were first isolated using a biotin-streptavidin linkage based magnetic selection and then cloned into plasmids. Out of forty-three sequenced clones three contained microsatellites, in these cases primers were designed for the amplification of the microsatellite repeats. The newly developed primer pairs were tested on individuals from distant R. rosea populations and the variability of the amplified fragments was estimated by fragment-length analysis. The locus RhpB14a was found to be monomorphic while RhpB14b and RhpB13 were polymorphic. As a result of the present study, two novel variable microsatellite loci were identified in the genome of R. rosea.
-
Evaluation of vermicompost application and stress of dehydration on mullein medicinal plants
69-77.Views:266The use of organic fertilizers is one of the suitable solutions in the organic production of medicinal plants due to its good effect in improving soil properties, reducing environmental effects, and better plant growth. To investigate the effect of vermicompost organic fertilizer application and water stress on some morphological and physiological traits of the Mullein medicinal plant, research was conducted at Isfahan Azad University in the form of split plots in the form of a randomized complete block design with 4 replications. The test factors included the application of vermicompost organic fertilizer at three levels of 0, 4, and 8 kg per square meter of soil and water stress at two levels of normal irrigation and irrigation at the time of 50% of the soil's agricultural capacity as the main treatment in research farm conditions. The results of the experiment showed that the application of vermicompost organic fertilizer and water stress improved the morphological and physiological characteristics of the Mullein medicinal plant compared to the control, i.e. no application of organic fertilizers. The results showed that the highest number of secondary branches, number of flowers of the secondary stem, diameter of flowering stem, the diameter of flower, and fresh weight of shoot in the Mullein medicinal plant were obtained by applying vermicompost organic fertilizer at the rate of 4 and 8 kg of soil. The application of vermicompost organic fertilizer at the rate of 8 kg in the soil increased flavonoids compared to the non-use of vermicompost treatment. However, to improve the vegetative growth and increase the reproductive efficiency of the Mullein plant and reduce production costs, the use of vermicompost organic fertilizer is recommended at the rate of 4 and 8 kg of soil, respectively.
-
The use of SSR markers in family Rosaceae
29-32.Views:316The identification of plant species and study of their genetic relatedness is an important object of plant genetics. The Rosaceae family contains a lot of economically important fruit, ornamental, and wild plant species. The microsatellite markers have been proven to be an efficient tool for description of the genetic relatedness among varieties and species. Their evolutionary conserved regions enable them to differentiate among various accessions. This article intends to show proceeded identification and characterization projects on Rosaceae species by using SSR markers. The article presents sources of already published primer sequences. The use of already published primers can highly reduce the cost and duration of this kind of researches.
-
Evaluation of Colour Versions of Wild Sage (Salvia nemorosa L.)
111-115.Views:365In the continental weather zone, more and more frequently occurring extreme conditions require continuous renewal of the market which generates constant challenge for the ornamental plant breeders. Most of the traditionally used decorative ornamental plants are sensitive to these extreme conditions. In 2001, Department of Plant Biotechnology, Debrecen University initiated an interdisciplinary breeding program in collaborations with Zoltan Kovats (he dealt with hungarian drought-tolerant plant species) to produce new or reintroduce forgotten drought-tolerant ornamental species into public parks and roadsides. From ~900 species of Salvia genus, Salvia nemorosa L. has been known as a medical plant, however, because of its high adaptation ability and decorative nature it is a highly recommended ornamental plant as well. Salvia nemorosa L. has a low maintenance, extremely droughttolerant, fast growing plant, generates proper cover, and highly competing weeds on roadsides. Nowadays, 50-60 varieties are available; however this number could be increased by new hybrids. Great morphological and colour variation could be seen within the species, from different white to deep violet. The main goal of this research is the production of elite lines with wide colour and morphological variation in wild sage. We have already obtained 25 different clones for further investigation without eliminating the original plants generating an in vitro gene bank as it has been done by Italian breeders.
-
Resistance Gene Analogs (RGA) as a tool in fruit tree's breeding
7-15.Views:312Breeding for pest and disease resistance comes as a major objective behind the fruit traits. To increase the effectiveness of fruit resistance breeding application of the Marker Assisted Selection ( MAS) is advantageous. For generating molecular markers which enable the following of interesting traits basically two methods are available: targeted marker design based on conservative region of already known Resistance ( R) gene sequences or randomly generated markers. The creation and the application of these homology based markers are the object of this review in the main temperate zone fruit species.
-
Goals and results in improvement of biological background of medicinal plant production
20-27.Views:309The choice of varieties among medicinal plant species is relatively small, compared to other horticultural crops. In Hungary, only poppy (Papaver somniferum) and mustard (Sinapis alba) have several cultivars. Recognising the problem, in the recent years breeding activity has been intensified all over the world, in spite of financial, technical and legal difficulties. The article reports on the results of breeding at the Department of Medicinal and Aromatic Plants of the Szent István University, 11 varieties of which has been officially registered till 2000. Main goals of genetic improvement are: increasing of the production capacity of utilised plant organs, enhancement of active material accumulation capacity, improvement of sensory quality and technological properties. The most often applied methods are selection, and recently, cross breeding, the results of which can be measured on new materials of caraway (Carum carvi), hyssop (Hyssopus officinalis), marjoram (Majorana hortensis), poppy (Papaver somniferum), etc. Efficacy of breeding work is established by additional, regular research on the genetics, physiology, floral and reproductive biology, chemosyndromes of medicinal plant species.
-
The Effects of Some Parameters on Agrobacterium-Mediated Transformation in Muskmelon
46-49.Views:316Some parameters involved in Agrobacterium-mediated transformation in muskmelon Hales best (HBS) were studied. Cotyledon explants excised from 3.5-day-old seedlings were co-cultivated with Agrobacterium tumefaciens harbouring binary vectors which contained GUS and BAR genes. After co-cultivation on a low pH medium, explants were transferred to selective medium, with higher pH, containing Claforan and Finale. The medium was changed every two weeks till shoots were induced. All shoots rooted on MS medium supplemented with 0.3 mg/L IBA. These parameters combined as a whole led to successful transformation. The expression of the introduced gene construct was confirmed by GUS staining of shoot segments.
-
The effects of ACS (1-aminocyclopropane-l-carboxylate synthase) gene down regulation on ethylene production and fruit softening in transgenic apple
65-70.Views:220A detailed examination of the production of ethylene and other ripening parameters during storage period has been undertaken in transgenic apple fruits, where the ethylene biosynthesis was inhibited by antisense ACS (l-aminocyclopropane-l-carboxylate synthase) gene. Data indicate down regulation of ethylene production, softening and spoilage in some transgenic lines. In some cases ethylene production was inhibited for over 90 percent, considerable reduction of softening and spoilage was observed probably due to the reduced activity of cell wall degradable enzymes. ACS activity was also monitored during ripening. The fruits of the best transgenic lines could be stored for minimum 4-5 months longer under 5 °C cold room storage conditions and one month longer at normal room temperature. This molecular approach can provide an alternative way to replace the commonly used and costly atmospheric storage of fruits.
-
The effect of modified bacterial virulence to host-pathogen relationship (Phaseolus vulgaris L. Pseudomonas savastanoi pv. phaseolicola)
53-56.Views:452The Pseudomonas savastanoi pv. phaseolicola is one of the most expressive biogen stressors of the bean (Phaseolus vulgaris L.) in Hungary. The chemical and agrotechnological defence is inefficient, so breeding is the only workable way. The conventional cultivars are susceptible to PS while most of the new industrial varieties have genetic resistance to the pathogen. The genetic background of resistance is, however, a complex system in the bean. Leaf resistance is a monogenic system, but this gene is not expressed in juvenile stage of the host. The pathogen species can be divided into different races. After inoculation with virulent strains, typical symptoms appeared on the leaves. To understand the details of host-pathogen relationships, there were carried out experiments using bacterial strains with altered virulence. Six transposon mutants of the PS were tested. Our main objective was to test these modified bacterial strains on bean cultivars of known genetic background. First we analysed the symptoms, and then the correlation between the symptoms and the multiplication of mutant bacteria. Three cultivars (Cherokee, Inka and Főnix) were tested.
The infection by the virulent PS isolate produced typical symptoms on the three cultivars tested. Mutant bacteria (except strain 756) did not cause any significant symptoms on the hosts. The mutant 756 induced visible symptoms on the cultivars Cherokee and Inka. On Cherokee there were small watersoaked lesions, and HR (hypersensitivity reaction) was detected on Inka, but this was restricted to some cells only (mikro HR). The rate of multiplication of the wild type strain was much higher than the multiplication of the mutants. Bacteria were detected in the cotyledons and primordial leaf, but there is not any substantial number of bacteria in leaves, except for strains 757, 1212 and 1213. The rate of multiplication of strain 756 was intermediate. These, and other experiments can help to understand the genetic background of resistance and the host-pathogen relationship in the Pseudomonas-bean pathosystem.
-
Molecular analysis of strawberry cultivars using RAPD, AP-PCR and STS markers
24-28.Views:246Seventeen strawberry (Fragaria x ananassa Duch.) cultivars representing the national list of Hungary, were subjected to RAPD, AP—PCR and STS analysis. Of the 31 decamer and oligomer primers tested 26 primers produced polymorphic patterns. 45 polymorphic fragments were analysed, ranging between 200-2800 by in size. Based on the data, similarity coefficients (Jaccard index and Simple matching coefficient) were calculated, and dendrograms were constructed using the unweighted pair group method of arithmetic averages (UPGMA). The dendrograms only partly reflect the known pedigree data. Specific RAPD markers were identified for cultivars F5, Pocahontas and Rabunda.
-
Examinations of 600-year-old seeds by means of archaeobotanical and genetical methods
79-80.Views:275About 600-year-old plant seeds were discovered in a well of a mediaeval cellar in the course of an excavation in Budapest. After the archaeobotanic purification seed of 16 species were found in large quantities. Seeds preserved in the best state were selected from each group. The existence of endosperm was analysed in these subfossils, which turned to be successful mainly in the case of grapes (Vitis vinifera) and cornels (Cornus mas). Seeds of these two species contained the most endosperm and remains of the embryo. DNA was extracted with the help of DNEasy Plant Mini Kit and analysed by RAPD-PCR method. The amplification of DNA extracted from cornel seeds resulted in detecting a 1500 by fragment, which makes the comparison of these samples with present-day cornels possible.
-
General defense system in the plant kingdom III.
45-54.Views:283Our observations regarding the symptoms not fitting into, significantly differing from the hypersensitive defense system, which we noticed during the judgment of several plant species, symptoms provoked on several million plants have constituted a unified entity. They have provided evidence for the existence of a different plant defense system. We called this so far unknown basic response of plants to biotic effects as general defense system. This system defends them from the attack of numerous microbe species in the environment.
The evolutionary intermediate phase between the general and the specific, the two defense systems is the susceptible host—pathogen relation. The vertical resistance system of plants escaping from the susceptible host—pathogen relation, based on specific hypersensitive reaction also suggested the existence of a more original, general defense system and the susceptible host—pathogen relation developed as a result of the collapse of that system.
The evolutionary relation of the two defense systems is proved by the only recessive inheritance of the older general defense system and in the majority of cases dominant hereditary course of the specific defense system. In our experiences, the modifying genes of the recessive general defense system, in most cases, are behind the specific defense systems, which are known to have monogenic dominant hereditary course and react with hypersensitive tissue destruction. This seemingly striking genetic fact is explained by the following: the general defense system less dependent on environmental effects regulates much faster pathophysiological reaction than the specific resistance genes strongly dependant on environmental effects coding dominant hypersensitive reaction.
The general and specific defense reactions, the processes excluding the microbes attacking plants with compacting of cell growth and tissue destruction, which mean two opposite strategies, building on and regulating each other constitute the entity of resistance to plant disease.