Search

Published After
Published Before

Search Results

  • Square root in secondary school
    59-72
    Views:
    111

    Although in Hungary, for decades, the calculation method of the square root of a real number is not in the mathematics curriculum, many of the taught concepts and procedures can be carried out using different square root finding methods. These provide an opportunity for students in secondary school to practice and deepen understand the compulsory curriculum. This article presents seven square-root- nding methods, currently teachable in secondary schools.

    Subject Classification: A33, A34, F53, F54

  • The development of geometrical concepts in lower primary mathematics teaching: the square and the rectangle
    153-171
    Views:
    46
    Our research question is how lower primary geometry teaching in Hungary, particularly the concept of squares and rectangles is related to the levels formulated by van Hiele. Moreover to what extent are the concrete activities carried out at these levels effective in evolving the concepts of squares and rectangles.
    In the lower primary geometry teaching (classes 1-4) the first two stages of the van Hiele levels can be put into practice. By the completion of lower primary classes level 3 cannot be reached. Although in this age the classes of concepts (rectangles, squares) are evolved, but there is not particular relationship between them. The relation of involvement is not really perceived by the children.
  • Maximum and minimum problems in secondary school education
    81-98
    Views:
    31
    The aim of this paper is to offer some possible ways of solving extreme value problems by elementary methods with which the generally available method of differential calculus can be avoided. We line up some problems which can be solved by the usage of these elementary methods in secondary school education. The importance of the extremum problems is ignored in the regular curriculum; however they are in the main stream of competition problems – therefore they are useful tools in the selection and development of talented students. The extremum problem-solving by elementary methods means the replacement of the methods of differential calculus (which are quite stereotyped) by the elementary methods collected from different fields of Mathematics, such as elementary inequalities between geometric, arithmetic and square means, the codomain of the quadratic and trigonometric functions, etc. In the first part we show some patterns that students can imitate in solving similar problems. These patterns could also provide some ideas for Hungarian teachers on how to introduce this topic in their practice. In the second part we discuss the results of a survey carried out in two secondary schools and we formulate our conclusion concerning the improvement of students' performance in solving these kind of problems.
  • Nice tiling, nice geometry!?!
    269-280
    Views:
    38
    The squared papers in our booklets, or the squared (maybe black and white) pavements in the streets arise an amusing problem: How to deform the side segments of the square pattern, so that the side lines further remain equal (congruent) to each other? More precisely, we require that each congruent transformation of the new pattern, mapping any deformed side segment onto another one, leaves the whole (infinitely extended) pattern invariant (unchanged).
    It turns out that there are exactly 14 types of such edge-transitive (or so-called isotoxal) quadrangle tilings, sometimes with two different forms (e.g. black and white) of quadrangles (see Figure 2). Such a collection of tiling can be very nice, perhaps also useful for decorative pavements in streets, in flats, etc.
    I shall sketch the solution of the problem that leads to fine (and important) mathematical concepts (as barycentric triangulation of a polygonal tiling, adjacency operations, adjacency matrix, symmetry group of a tiling, D-symbol, etc). All these can be discussed in an enjoyable way, e.g. in a special mathematical circle of a secondary school, or in more elementary form as visually attractive figures in a primary school as well.
    My colleague, István Prok [11] developed an attractive computer program on the Euclidean plane crystallographic groups with a nice interactive play (for free download), see our Figures 3-5.
    A complete classification of such Euclidean plane tilings (not only with quadrangles) can be interesting for university students as well, hopefully also for the Reader (Audience). This is why I shall give some references, where you find also other ones.
    Further problems indicate the efficiency of this theory now. All these demonstrate the usual procedure of mathematics and the (teaching) methodology as well: We start with a concrete problem, then extend it further, step-by-step by creating new manipulations, concepts and methods. So we get a theory at certain abstraction level. Then newer problems arise, etc.
    This paper is an extended version of the presentation and the conference paper [7]. The author thanks the Organizers, especially their head Professor Margita Pavlekovic for the invitation, support and for the kind atmosphere of the conference.
  • Proof without words
    311-312
    Views:
    5
    Let us prove: If we add 1 to the product of four consecutive natural numbers, we get a square number:…
  • Entwicklung eines Messinstruments zu den Grunderfahrungen des Informatikunterrichts
    159-178
    Views:
    57

    The three basic experiences of computer science education (GI) take into account the personal perceptions and attitudes of students to computer science education. The aim of this study is to develop an inventory to capture these learners' perceptions and perspectives in order to select content or to track learners' development in relation to computer science. Exploratory factor analysis (EFA), partial least square analysis (PLS) and con rmatory factoranalysis (CFA) was used in this study to generate and select items and establish reliability and validity.

    Subject Classification: Q20, Q50