Search

Published After
Published Before

Search Results

  • Game theory for managers and mechanical manager students
    73-91
    Views:
    25
    In this article we describe the second part of a case study, in which 48 Mechanical Management students were involved. The participants of the case study were MSc level students at Szent István University, Gödöllő.
    In the case study we looked for methods by which we can support the most important components of competence motivation and the development of mathematical and other key competences during the mathematics lessons and individual learning.
    Another goal of our research was to get reliable information about students learning methods and their awareness of self-efficiency, furthermore their achievement in the subject of Engineering and Economic Mathematics.
    Detailed assistance was provided for the students in the e-learning portal. Knowledge tests, questionnaire and personal interviews with the students were also used.
    During the semester four topics have been discussed: linear programming, graph theory, game theory and differential equations. In this article I will describe the lesson preparations, the help for examinations and the students' achievement on game theory.
  • Teaching probability using graph representations
    103-122
    Views:
    34
    The main objective of this paper is to present an elementary approach to classical probability theory, based on a Van Hiele type framework, using graph representation and counting techniques, highly suitable for teaching in lower and upper secondary schools. The main advantage of this approach is that it is not based on set theoretical, or combinatorial knowledge, hence it is more suitable for beginners and facilitates the transitions from level 0 to level 3. We also mention a few teaching experiences on different levels (lower secondary school, upper secondary school, teacher training, professional development, university students) based on this approach.
  • Engineering and Economic Mathematics for Engineering Management Students
    35-50
    Views:
    35
    In this article we describe the first part of a case study, which was made with 48 Engineering Management students. The participants of the case study were MSc level students at the Szent István University, Gödöllő. We looked for methods by which we can support the most important components of competence motivation and the development of mathematical and other key competences during the mathematics lessons and individual learning. Another goal of our research was to get reliable information about students learning methods and their awareness of self-efficacy, furthermore their achievement in the subject of Engineering and Economic Mathematics. Detailed assistance was provided for the students in the e-learning portal. Knowledge tests, questionnaire and personal interviews with the students were also used. As an example we introduce one of the knowledge tests connected with the first half of the course about linear programming and graph theory. We detail its didactical background and show the results of the students.
  • The single-source shortest paths algorithms and the dynamic programming
    25-35
    Views:
    31
    In this paper we are going to present a teaching—learning method that help students look at three single-source shortest paths graph-algorithms from a so called "upperview": the algorithm based on the topological order of the nodes, the Dijkstra algorithm, the Bellman-Ford algorithm. The goal of the suggested method is, beyond the presentation of the algorithms, to offer the students a view that reveals them the basic and even the slight principal differences and similarities between the strategies. In order to succeed in this object, teachers should present the mentioned algorithms as cousin dynamic programming strategies.
  • Linear clause generation by Tableaux and DAGs
    109-118
    Views:
    32
    Clause generation is a preliminary step in theorem proving since most of the state-of-the-art theorem proving methods act on clause sets. Several clause generating algorithms are known. Most of them rewrite a formula according to well-known logical equivalences, thus they are quite complicated and produce not very understandable information on their functioning for humans. There are other methods that can be considered as ones based on tableaux, but only in propositional logic. In this paper, we propose a new method for clause generation in first-order logic. Since it inherits rules from analytic tableaux, analytic dual tableaux, and free-variable tableaux, this method is called clause generating tableaux (CGT). All of the known clause generating algorithms are exponential, so is CGT. However, by switching to directed acyclic graphs (DAGs) from trees, we propose a linear CGT method. Another advantageous feature is the detection of valid clauses only by the closing of CGT branches. Last but not least, CGT generates a graph as output, which is visual and easy-to-understand. Thus, CGT can also be used in teaching logic and theorem proving.
  • Illustrated analysis of Rule of Four using Maple
    383-404
    Views:
    37
    Rule of Four, as a basic didactic principle, was formulated among the NCTM 2000 standards (see [14]) and since then it is quoted by numerous books and publications (see [4], [9], [12]). Practically we can say it is accepted by the community of didactic experts. The usage of the Rule of Four, however, has been realized mainly in the field of calculus, in fact certain authors restrict the wording of the principle to the calculus itself (e.g. [3]).
    Calculus is a pleasant field, indeed. A sequence of values of a function provides us with example for numeric representation, while the formula and the graph of the function illustrate symbolic and graphical representations, respectively. In the end by wording the basic features of the function on natural language we gain textual representation.
    This idyllic scene, however, becomes more complex when we leave the frame of calculus. In this paper we investigate the consequences of the usage of Rule of Four outside calculus. We discuss the different types of representations and show several examples which make the multiple features of representation evident. The examples are from different fields of mathematics and are created by the computer algebra system Maple, which turns out to be an excellent tool for illustration and visualization of the maim features of mathematical objects.
    Next we introduce the concept of basic representation and rational representation, which is considered as the mathematical notion of "didactic usable" or "didactic rational" representation. In the end we generalize the notion of numeric representation, which leads us a more widely usable didactic principle which can be considered as a generalization of Rule of Four.
  • Examining relation between talent and competence through an experiment among 11th grade students
    17-34
    Views:
    32
    The areas of competencies that are formable, that are to be formed and developed by teaching mathematics are well-usable in recognizing talent. We can examine the competencies of a student, we can examine the competencies required to solve a certain exercise, or what competencies an exercise improves.
    I studied two exercises of a test taken by students of the IT specialty segment of class 11.d of Jedlik Ányos High School, a class that I teach. These exercises were parts of the thematic unit of Combinatorics and Graph Theory. I analysed what competencies a gifted student has, and what competencies I need to improve while teaching mathematics. I summarized my experience about the solutions of the students, the ways I can take care of the gifted students, and what to do to the less gifted ones.