Search
Search Results
1 - 3 of 3 items
-
CAS-aided visualization in LATEX documents for mathematical education
1-18Views:26We have been developing KETpic as a macro package of a CAS for drawing fine LATEX-pictures, and we use it efficiently in mathematical education. Printed materials for mathematics classes are prepared under several constraints, such as "without animation", "mass printings", "monochrome", and "without halftone shadings". Because of these constraints, visualization in mathematical education tends to be unsatisfactory. Taking full advantages of LATEX and CAS, KETpic enables us to provide teaching materials with figures which are effective for mathematical education. The effects are summarized as follows:
(1) The plottings of KETpic are accurate due to CAS, and enable students to deduce mathematical laws.
(2) KETpic can provide adequate pictures for students' various interest. For example, when some students who understand a matter try to modify it, KETpic can give them appropriate and experimental figures.
(3) Even though CAS can draw 3D-figures beautifully and automatically, it is expensive for mass printings and the figures are sometimes not easy to understand. Oppositely, 3D-graphics by KETpic are monochrome, but are richly expressive.
In this paper, we give various examples of LATEX-pictures which we drew by using KETpic. For instance, the picture which is used in order to explain the convergence theorem of Fourier series makes it easier for students to understand the idea that function series converge to another function. Also the picture of skeleton is endowed with clear perspective. KETpic gives us great potential for the teaching of combinatorial mathematics. Through these examples, we claim that KETpic should have great possibilities of rich mathematical expressions under the constraints above mentioned. -
Geometry expressions: an interactive constraint based symbolic geometry system
303-310Views:24Dynamic geometry systems such as Geometers' SketchPad or Cabri are productive environments for the exploration of geometric relationships. They are, however, strictly numeric, and this limits their applicability where the interplay between geometry and algebra are being studied. We present Geometry Expressions – a dynamic symbolic geometry environment. While retaining the ease of use of a typical dynamic geometry environment, Geometry Expressions diverges by using constraints rather than constructions as the primary geometry specification mechanism and by working symbolically rather than numerically. Constraints, such as distances and angles, are specified symbolically. Symbolic measurements for quantities such as distances, angles, areas, locus equations, are automatically computed by the system. We outline how these features combine to create a rich dynamic environment for exploring the interplay between geometry and algebra, between induction and proof. -
Experimentieren um einen Satz zu finden - vollständig separierbare Mosaike auf der Kugel und ihre Anwendungen
297-319Views:25This paper reports a case-study which took place within the project named "Inner differentiation and individualization by creating prototypes and analogies under consideration of motivational constraints (taking into account computer-based teaching and learning)" as a part of a pre-service teacher training at the University of Salzburg (Herber, H.-J. & Vásárhelyi, É.).
The goal of the experiment was to help students to learn the fundamental concepts and basic constructions of spherical geometry using the Lénárt Sphere (a transparent plastic ball with construction-tools) and some self-made interactive worksheets with the Windows version of the dynamical geometry software Cabri.
1 - 3 of 3 items