Search
Search Results
1 - 3 of 3 items
-
Process or object? Ways of solving mathematical problems using CAS
117-132Views:26Graphing and symbol manipulating calculators are now a part of mathematics education in many countries. In Norway symbol manipulating calculators have been used at various exams in upper secondary education. An important finding in mathematics education is the duality of mathematical entities – processes and objects. Building on the theoretical development by Anna Sfard and others, the students' solutions on exam problems in upper secondary education are discussed with reference to procedural and structural knowledge. -
Compositions of dilations and isometries in calculator-based dynamic geometry
257-266Views:32In an exploratory study pre-service elementary school teachers constructed dilations and isometries for figures drawn and transformed using dynamic geometry on calculators. Observational and self assessments of the constructed images showed that the future teachers developed high levels of confidence in their abilities to construct compositions of the geometric transformations. Scores on follow-up assessment items indicated that the prospective teachers' levels of expertise corresponded to their levels of confidence. Conclusions indicated that dynamic geometry on the calculator was an appropriate technology, but one that required careful planning, to develop these future teachers' expertise with the compositions. -
Herschel's heritage and today's technology integration: a postulated parallel
419-430Views:26During the early 20th century, advocacy of a range of mathematical technologies played a central part in movements for the reform of mathematical education which emphasised ‘practical mathematics' and the ‘mathematical laboratory'. However, as these movements faltered, few of the associated technologies were able to gain and maintain a place in school mathematics. One conspicuous exception was a technology, originally championed by the mathematician Herschel, which successfully permeated the school mathematics curriculum because of its:
• Disciplinary congruence with influential contemporary trends in mathematics.
• External currency in wider mathematical practice beyond the school.
• Adoptive facility of incorporation in classroom practice and curricular activity.
• Educational advantage of perceived benefits outweighing costs and concerns.
An analogous perspective is applied to the situation of new technologies in school mathematics in the early 21st century. At a general level, the cases of calculators and computers are contrasted. At a more specific level, the educational prospects of CAS and DGS are assessed.
1 - 3 of 3 items