Articles
On the nine-point conic of hyperbolic triangles
Published:
2025-12-01
Author
View
Keywords
License
Copyright (c) 2025 Zoltán Szilasi

This work is licensed under a Creative Commons Attribution 4.0 International License.
How To Cite
Selected Style:
APA
Szilasi, Z. (2025). On the nine-point conic of hyperbolic triangles. Teaching Mathematics and Computer Science, 23(2), 195-211. https://doi.org/10.5485/TMCS.2025.15646
Abstract
In the Cayley–Klein model, we review some basic results concerning the geometry of hyperbolic triangles. We introduce a new definition of the circumcircle of a hyperbolic triangle, guaranteed to exist in every case, and describe its main properties. Our central theorem establishes, by means of purely elementary projective geometric arguments, that a hyperbolic triangle has a nine-point conic if and only if it is a right triangle.
Subject Classification: 51M09
References
- Akopyan, A. V. (2011). On some classical constructions extended to hyperbolic geometry. https://arxiv.org/pdf/1105.2153
- Baldus, R. (1929). Über Eulers Dreieckssatz in der Absoluten Geometrie. Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Math.-naturw. Kl., Volume 11. De Gruyter.
- Bamberg, J., & Penttila, T. (2023). Analytic projective geometry. Cambridge Unversity Press.
- Coxeter, H. S. M. (1955). The real projective plane. Second edition. Cambridge University Press.
- Evers, M. (2024). Quadri-figures in Cayley–Klein planes: All around the Newton line. https://arxiv.org/pdf/2409.17802
- Izmestiev, I. (2017). Spherical and hyperbolic conics. https://arxiv.org/pdf/1702.06860
- Millmann, R. S., & Parker, G. D. (1981). Geometry: A metric approach with models. Springer New York.
- Molnár, E. (1978). Kegelschnitte auf der metrischen Ebene. Acta Mathematica Hungarica, 31 (3-4), 317–343. https://doi.org/10.1007/BF01901981
- O’Hara, C. W., & Ward, D. R. (1937). An introduction to projective geometry. The Clarendon Press, Oxford.
- Szilasi, Z. (2012a). Classical theorems on hyperbolic triangles from a projective point of view. Teaching Mathematics and Computer Science, 10 (1), 175–181. https://doi.org/10.5485/TMCS.2012.0301
- Szilasi, Z. (2012b). Two applications of the theorem of Carnot. Annales Mathematicae et Informaticae, 40 (1), 135–144.
- Vigara, R. (2014). Non-euclidean shadows of classical projective theorems. https://arxiv.org/pdf/1412.7589
- Weiss, G. (2016). Special conics in a hyperbolic plane. KoG, 20, 31–40.
https://doi.org/10.5485/TMCS.2025.15646