Development and assessment of non-cognitive skills among engineering students: a comparison across two universities
Authors
View
Keywords
License
Copyright (c) 2025 Adrienn Vámosiné Varga, Boglárka Burján-Mosoni, Erika Rozgonyi, Szilvia Homolya

This work is licensed under a Creative Commons Attribution 4.0 International License.
How To Cite
Abstract
Non-cognitive skills, such as logical thinking and problem solving, are crucial for success in engineering fields. To assess these skills in undergraduate engineering students, we designed a targeted test comprising four different types of tasks. The study was conducted among students at the Faculty of Engineering at the University of Debrecen, and the Faculty of Mechanical Engineering and Informatics at the University of Miskolc. The aim of this paper is to analyze the test results, gather students’ feedback, and examine the strength of the relationships between deductive reasoning, diagrammatic reasoning, and algebraic thinking.
Subject Classification: 97C20
References
- Bassett, G., & Krupczak, J., Jr. (2022). Abstract thought in engineering science: Theory and design. In Philosophy and engineering education. Synthesis Lectures on Engineering, Science, and Technology (pp. 41–51). Springer, Cham. https://doi.org/10.1007/978-3-031-03761-0 4
- Biggs, J., & Tang, C. (2011). Teaching for quality learning at university. Fourth edition. Open University Press.
- Bronkhorst, H., Roorda, G., Suhre, G., & Goedhart, M., (2021). Student development in logical reasoning: Results of an intervention guiding students through different modes of visual and formal representation. Canadian Journal of Science, Mathematics and Technology Education, 21, 378–399. https://doi.org/10.1007/s42330-021-00148-4
- Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54 (1), 1–22.
- Farkas, É. (2017). Tanulási eredmény alapú tanterv- és tantárgyfejlesztés a felsőoktatásban, Szegedi Egyetemi Kiadó, Juhász Gyula Felsőoktatási Kiadó.
- Homolya, Sz., & Rozgonyi, E. (2022). The results of the university competence measurement in mathematics in the view of the tasks. Mathematics in Education, Research and Applications, 8 (1), 24–32. https://doi.org/10.15414/meraa.2022.08.01.24-32
- Mielicki M. K., Kacinik N. A., & Wiley J. (2017). Bilingualism and symbolic abstraction: Implications for algebra learning. Learning and Instruction, 49, 242–250. https://doi.org/10.1016/j.learninstruc.2017.03.002
- Newton, P., & Bristoll, H. (2024). Diagrammatic Reasoning. Practice Test 1. Retrieved January 3, 2024, from https://psychometric-success.com/test-pdfs/PsychometricSuccessDiagrammaticReasoning-PracticeTest1.pdf
- Piaget, J. (1969). Psychologie et pédagogie. Bibliothéque Médiations, Volume 59. Gonthiers/Denöel.
- Raven, J. C., Court, J. H., & Raven, J. (1993). Test de matrices progresivas. Escalas coloreadas, general y avanzada. Manual. Paidós.
- Sibgatullin, I. R., Korzhuev, A. V., Khairullina, E. R., Sadykova, A. R., Baturina, R. V., & Chauzova, V. (2022). A systematic review on algebraic thinking in education. EURASIA Journal of Mathematics, Science and Technology Education, 18 (1), Article No: em2065. https://doi.org/10.29333/ejmste/11486
- Tóth, P., Horváth, K., & Kéri, K. (2021). Development level of engineering students’ inductive thinking. Acta Polytechnica Hungarica, 18 (5), 107–129.
- Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25 (1), 127–147.
https://doi.org/10.5485/TMCS.2025.15527