Articles

Self-regulated learning in mathematics lessons at secondary level

Published:
2025-12-01
Authors
View
Keywords
License

Copyright (c) 2025 Sophie Rusznak, Stefan Götz

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Rusznak, S., & Götz, S. (2025). Self-regulated learning in mathematics lessons at secondary level. Teaching Mathematics and Computer Science, 23(2), 139-160. https://doi.org/10.5485/TMCS.2025.15410
Abstract

Self-regulation is a prerequisite to be able to set goals and to find suitable ways to reach them. Furthermore, it is an important ability which affects different areas of every day’s life. In educational context, self-regulation is often linked to self-regulated learning. The concept of self-regulated learning as well as key terms related to this topic such as problem-solving and modelling tasks will be discussed, while an emphasis lays on the role of the teacher. In this paper, a study on the attitudes of mathematics teachers towards self-regulated learning is presented. It focuses on teachers’ assessment of the possibility and limitations of self-regulated learning in mathematics lessons. It can be observed that most of the surveyed teachers try to incorporate self-regulatory processes in their teaching, but encounter difficulties related to various factors, such as their students, framework conditions, and the time required for such learning processes.

Subject Classification: 97D10

References
  1. Azevedo, R. (2009). Theoretical, conceptual, methodological, and instructional issues in research on metacognition and self-regulated learning: A discussion. Metacognition Learning, 4, 87–95. https://doi.org/10.1007/s11409-009-9035-7
  2. Baumert, J., Blum, W., & Brunner, M. (2019). Unterrichtsziel: Modellierungsf ähigkeit – Lehrkräfte. Professionswissen von Lehrkräften, kognitiv aktivierender Mathematikunterricht und die Entwicklung mathematischer Kompetenz – Fragebogenerhebung Erhebungszeitpunkt 1 (COACTIV) [Teaching objective: Modelling ability – teachers. Teachers’ professional knowledge, cognitively activating mathematics lessons and the development of mathematical competence – questionnaire survey at survey time 1 (COACTIV)]. Forschungsdatenzentrum Bildung am DIPF.
  3. Blum, W., Drüke-Noe, C., Hartung, R., & Köller, O. (Eds.) (2010). Bildungsstandards Mathematik: konkret [Mathematics educational standards: precise]. Cornelsen.
  4. Blum, W., Galbraith, P. L., Henn, H.-W., & Niss, M. (Eds.) (2007). Modelling and Applications in Mathematics Education. The 14th ICMI Study. NISS, Volume 10. Springer. https://doi.org/10.1007/978-0-387-29822-1
  5. Blum, W., & Leiß, D. (2005). Modellieren im Unterricht mit der “Tanken”- Aufgabe [Modelling in lessons with the “fuel”-task]. Mathematik lehren, (128), 18–21.
  6. Bruder, R. (2005). Selbstreguliertes Lernen im Mathematikunterricht [Selfregulated learning in mathematics lessons] [PowerPoint slides]. https://www.math-learning.com/files/Marburg2005_vortrag.pdf
  7. Bundesministerium für Bildung, Wissenschaft und Forschung (Ed.) (2021). Nationaler Bildungsbericht Österreich 2021 [National Education Report Austria 2021]. http://doi.org/10.17888/nbb2021
  8. Diel, E. (Projektleitung) (2011). Hessischer Referenzrahmen Schulqualität [Hessian reference framework for school quality]. Institut für Qualitätsentwicklung (IQ) in Hessen. https://seb-ghs.de/wp-content/uploads/2017/10/hessischer-referenzrahmen-schulqualitaet-hrs.pdf
  9. Dignath-van Ewijk, C., & van der Werf, G. (2012). What teachers think about self-regulated learning: Investigating teacher beliefs and teacher behavior of enhancing students’ self regulation. Education Research International, 1–10. https://doi.org/10.1155/2012/741713
  10. Donker, A. S., de Boer, H., Kostons, D., Dignath-van Ewijk, C. C., & van der Werf, M. P .C. (2014). Effectiveness of learning strategy instruction on academic performance: A meta-analysis. Educational Research Review, 11, 1–26. https://doi.org/10.1016/j.edurev.2013.11.002
  11. Gardenia, A., Blumentritt, M., Olderog, T., & Schwesig, R. (2017). Strategien für den Lernerfolg berufstätiger Studierender. Empirische Analysen zum Lernverhalten [Strategies for the learning success of working students. Empirical analyses of learning behaviour]. Springer. https://doi.org/10.1007/978-3-658-17530-6
  12. Giger, R. (2014). Selbstreguliertes Lernen in der Schule: Förderung metakognitiver Kompetenzen wie Reflexions- und Selbstbeurteilungskompetenz im Mathematikunterricht [Self-regulated learning at school: Promoting metacognitive competences such as reflection and self-assessment skills in mathematics lessons]. Diplomica Verlag.
  13. Götz, T. (Ed.). (2017). Emotion, Motivation und selbstreguliertes Lernen [Emotion, motivation and self-regulated learning]. Second edition. Ferdinand Schöningh. https://doi.org/10.36198/9783838548135
  14. Gürtler, T., Perels, F., Schmitz, B., & Bruder, R. (2002). Training zur Förderung selbstregulativer Fähigkeiten in Kombinaton mit Problemlösen in Mathematik [Training to promote self-regulatory skills in combination with problem solving in maths]. In M. Prenzel, & J. Doll (Eds.), Bildungsqualit ät von Schule: Schulische und außerschulische Bedingungen mathematischer, naturwissenschaftlicher und überfachlicher Kompetenzen [Educational quality of schools: School and extracurricular conditions for mathematical, scientific and interdisciplinary skills] (pp. 222–239). Beltz. https://doi.org/10.25656/01:3949
  15. Hankeln, C., & Greefrath, G. (2021). Mathematische Modellierungskompetenz fördern durch Lösungsplan oder Dynamische Geometrie-Software? Empirische Ergebnisse aus dem LIMo-Projekt [Fostering mathematical modelling competency via solution plan or dynamic geometry software? Empirical results of the LIMo-Project]. Journal für Mathematik-Didaktik, 42, 367–394. https://doi.org/10.1007/s13138-020-00178-9
  16. Herold-Blasius, R. (2021). Problemlösen mit Strategieschlüsseln. Eine explorative Studie zur Unterstützung von Problembearbeitungsprozessen bei Dritt- und Viertklässlern [Problem solving with strategy keys. An explorative study on the support of problem-solving processes in third and fourth graders]. Springer Spektrum. https://doi.org/10.1007/978-3-658-32292-2
  17. Humenberger, H. (2017). Modellierungsaufgaben im Unterricht – selbst Erfahrungen sammeln [Modelling tasks in the classroom – gain experience yourself]. In H. Humenberger, & M. Bracke (Eds.), Neue Materialien für einen realtätsbezogenen Mathematikunterricht 3 [New materials for reality-oriented mathematics lessons 3] (pp. 107–118). Springer Spektrum. https://doi.org/10.1007/978-3-658-11902-7_8
  18. Krüger, A. (2021). Metakognition beim mathematischen Modellieren. Strategieeinsatz aus Schülerperspektive [Metacognition in mathematical modelling. Strategy use from the student perspective]. Springer Spektrum. https://doi.org/10.1007/978-3-658-33622-6
  19. Kuckartz, U. (2014). Mixed Methods. Methodologie, Forschungsdesigns und Analyseverfahren [Mixed Methods. Methodology, research designs and analytical procedures]. Springer VS. https://doi.org/10.1007/978-3-531-93267-5
  20. Kuckartz, U., & Rädiker, S. (2022). Qualitative Inhaltsanalyse. Methoden, Praxis, Computerunterstützung [Qualitative content analysis. Methods, practice, computer support]. Fifth edition. Beltz.
  21. Latcheva, R., & Davidov, E. (2019). Skalen und Indizes [Scales and indices]. In N. Baur, & J. Blasius (Eds.), Handbuch Methoden der empirischen Sozialforschung [Handbook of methods of empirical social research] (pp. 893–905). Springer VS. https://doi.org/10.1007/978-3-658-21308-4_62
  22. Maag-Merki, K., Klieme, E., Holmeier, M., Jäger, D. J., Oerke, B., & Appius, S. (2015). Unterrichtsmethoden mit Ziel “selbstreguliertes Lernen” – Lehrkräfte [Teaching methods with the aim of “self-regulated learning” – Teachers]. In Längsschnittstudie Zentralabitur – Fragebogenerhebung Vorerhebung [Longitudinal study of the centrally standardized, school-leaving examination (Zentralabitur) – preliminary questionnaire survey] [Scale collection: Version 1.0]. [Data collection 2008]. Forschungsdatenzentrum Bildung am DIPF. https://doi.org/10.7477/49:57:1
  23. Mannion, J. (2020). Metacognition, self-regulation and self-regulated learning: what’s the difference? My College. https ://my.chartered.college/impact_article/metacognition-self-regulation-and-self-regulated-learning-whats-the-difference/
  24. Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically. Second edition. Pearson.
  25. Ormrod, J. E. (2006). Educational psychology: Developing learners. Fifth edition. Pearson.
  26. Perels, F., Dignath, C., & Schmitz, B. (2009). Is it possible to improve mathematical achievement by means of self-regulation strategies? Evaluation of an intervention in regular math classes. European Journal of Psychology of Education, 24 (1), 17–31. https://doi.org/10.1007/BF03173472
  27. Pintrich, P. R. (1999). The role of motivation in promoting and sustaining selfregulated learning. International Journal of Educational Research, 31 (6), 459–470. https://doi.org/10.1016/S0883-0355(99)00015-4
  28. Pintrich, P. R. (2000). The role of goal orientation in self-regulated learning. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of selfregulation (pp. 451–502). Academic Press. https://doi.org/10.1016/B978-012109890-2/50043-3
  29. Pólya, G. (2014). How to solve it: A new aspect of mathematical method. With a foreword by John H. Conway. Princeton University Press.
  30. Rakoczy, K., Buff, A., & Lipowsky, F. (2005). Dokumentation der Erhebungsund Auswertungsinstrumente zur schweizerisch-deutschen Videostudie “Unterrichtsqualität, Lernverhalten und mathematisches Verständnis”. 1. Befragungsinstrumente [Documentation of the survey and evaluation instruments for the Swiss-German video study “Teaching quality, learning behaviour and mathematical understanding”. 1. Survey instruments]. Materialien zur Bildungsforschung; 13. Gesellschaft zur Förderung Pädagogischer Forschung (GFPF). https://doi.org/10.25656/01:3106
  31. Schneider, W., & Artelt, C. (2010). Metacognition and mathematics education. ZDM Mathematics Education, 42 (2), 149–161. https://doi.org/10.1007/s11858-010-0240-2
  32. Schoenfeld, A. H. (1985). Mathematical problem solving. Academic Press.
  33. Schoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics (Reprint). Journal of Education, 196 (2), 1–38. https://doi.org/10.1177/002205741619600202
  34. Schukajlow, S., & Leiss, D. (2011). Selbstberichtete Strategienutzung und mathematische Modellierungskompetenz [Self-reported use of strategies and mathematical modelling]. Journal für Mathematikdidaktik, 32 (1), 53–77. https://doi.org/10.1007/s13138-010-0023-x
  35. Sjuts, J. (2016). Darstellungen und Vorstellungen und ihre Bedeutung für eine wirksame Metakognition beim Problemlösen und Begründen [Representations and ideas and their importance for effective metacognition in problem solving and argumentation]. Teaching Mathematics and Computer Science, 14 (2), 195–220. https://doi.org/10.5485/TMCS.2016.0423
  36. Stoppel, H.-J. (2019). Beliefs und selbstreguliertes Lernen. Eine Studie in Projektkursen der Mathematik in der gymnasialen Oberstufe [Beliefs and selfregulated learning. A study in mathematics project courses in the upper secondary school]. Springer Spektrum. https://doi.org/10.1007/978-3-658-24913-7
  37. Vandevelde, S., Vandenbussche, L., & Van Keer, H. (2012). Stimulating selfregulated learning in primary education: Encouraging versus hampering factors for teachers. Procedia - Social and Behavioral Sciences, 69, 1562– 1571. https://doi.org/10.1016/j.sbspro.2012.12.099
  38. Völkl, K., & Korb, C. (2018). Deskriptive Statistik. Eine Einführung für Politikwissenschaftlerinnen und Politikwissenschaftler [Descriptive statistics. An introduction for political scientists]. Springer VS. https://doi.org/10.1007/978-3-658-10675-1
  39. Wess, R. (2020). Professionelle Kompetenz zum Lehren mathematischen Modellierens. Konzeptualisierung, Operationalisierung und Förderung von Aufgaben- und Diagnosekompetenz [Professional skill for teaching mathematical modelling. Conceptualization, operationalization and fostering of task and diagnostic competence]. Springer Spektrum. https://doi.org/10.1007/978-3-658-29801-2
  40. Zimmerman, B. J., Moylan, A., Hudesman, J., White, N., & Flugman, B. (2011). Enhancing self-reflection and mathematics achievement of at-risk urban technical college students. Psychological Test and Assessment Modeling, 53 (1), 141–160.
Database Logos

Keywords