Search

Published After
Published Before

Search Results

  • Verification of human-level proof steps in mathematics education
    345-362
    Views:
    11
    Automated mathematics tutorial systems need support from a reasoning module which can verify the correctness of students' contributions. However, current systems typically do not reason at a level similar to the student's reasoning level, and do not fully account for underspecified or ambiguous inputs. We present a domain-independent method for automatically verifying correct proof steps and detecting standard reasoning errors. We use a depth limited BFS proof search to determine and maintain multiple possible interpretations consistent with the given proof step, we are able to resolve or otherwise propagate underspecification and ambiguity which occurs due to unrestricted user input. Our approach has been implemented in ΩmegaCoRe.
  • What can we learn from Tamás Varga’s work regarding the arithmetic-algebra transition?
    39-50
    Views:
    82

    Tamás Varga’s Complex Mathematics Education program plays an important role in Hungarian mathematics education. In this program, attention is given to the continuous “movement” between concrete and abstract levels. In the process of transition from arithmetic to algebra, the learner moves from a concrete level to a more abstract level. In our research, we aim to track the transition process from arithmetic to algebra by studying the 5-8-grader textbooks and teacher manuals edited under Tamás Varga's supervision. For this, we use the appearance of “working backward” and “use an equation” heuristic strategies in the examined textbooks and manuals, which play a central role in the mentioned process.

    Subject Classification: 97-01, 97-03, 97D50

  • Herschel's heritage and today's technology integration: a postulated parallel
    419-430
    Views:
    26
    During the early 20th century, advocacy of a range of mathematical technologies played a central part in movements for the reform of mathematical education which emphasised ‘practical mathematics' and the ‘mathematical laboratory'. However, as these movements faltered, few of the associated technologies were able to gain and maintain a place in school mathematics. One conspicuous exception was a technology, originally championed by the mathematician Herschel, which successfully permeated the school mathematics curriculum because of its:
    • Disciplinary congruence with influential contemporary trends in mathematics.
    • External currency in wider mathematical practice beyond the school.
    • Adoptive facility of incorporation in classroom practice and curricular activity.
    • Educational advantage of perceived benefits outweighing costs and concerns.
    An analogous perspective is applied to the situation of new technologies in school mathematics in the early 21st century. At a general level, the cases of calculators and computers are contrasted. At a more specific level, the educational prospects of CAS and DGS are assessed.
  • A constructive and metacognitive teaching path at university level on the Principle of Mathematical Induction: focus on the students' behaviours, productions and awareness
    133-161
    Views:
    123

    We present the main results about a teaching/learning path for engineering university students devoted to the Principle of Mathematical Induction (PMI). The path, of constructive and metacognitive type, is aimed at fostering an aware and meaningful learning of PMI and it is based on providing students with a range of explorations and conjecturing activities, after which the formulation of the statement of the PMI is devolved to the students themselves, organized in working groups. A specific focus is put on the quantification in the statement of PMI to bring students to a deep understanding and a mature view of PMI as a convincing method of proof. The results show the effectiveness of the metacognitive reflections on each phase of the path for what concerns a) students' handling of structural complexity of the PMI, b) students' conceptualization of quantification as a key element for the reification of the proving process by PMI; c) students' perception of the PMI as a convincing method of proof.

    Subject Classification: 97B40, 97C70

  • Expressiveness of programming languages and environments: a comparative study
    111-141
    Views:
    31
    In written and oral communication tools, the support of the understanding of our message have an important role: we can increase the expressiveness and the level of understanding of our topic by approaching it in several ways, i.e. in written methods by highlighting the important parts; in oral by changing tone and other elements of non-verbal communication. In this paper programming languages and developing environments are compared with each other in terms of their methods and their level of support to the solution of programming tasks.
    There is a need to have these tools in programming and, of course, in teaching programming. What are the factors that define the distinctness and the legibility of a program? What are the basic principles which give an instrument in programmers' and students' hands in order to create a properly working program from already existing algorithms in the most efficient way? We search for the answers to these questions in this paper.
  • Teaching probability using graph representations
    103-122
    Views:
    32
    The main objective of this paper is to present an elementary approach to classical probability theory, based on a Van Hiele type framework, using graph representation and counting techniques, highly suitable for teaching in lower and upper secondary schools. The main advantage of this approach is that it is not based on set theoretical, or combinatorial knowledge, hence it is more suitable for beginners and facilitates the transitions from level 0 to level 3. We also mention a few teaching experiences on different levels (lower secondary school, upper secondary school, teacher training, professional development, university students) based on this approach.
  • Application of computer algebra systems in automatic assessment of math skills
    395-408
    Views:
    36
    Mathematics is one of those areas of education, where the student's progress is measured almost solely by testing his or her ability of problem solving. It has been two years now that the authors develop and use Web-based math courses where the assessment of student's progress is fully automatic. More than 150 types of problems in linear algebra and calculus have been implemented in the form of Java-driven tests. Those tests that involve symbolic computations are linked with Mathematica computational kernel through the Jlink mechanism. An individual test features random generation of an unlimited number of problems of a given type with difficulty level being controlled flat design time. Each test incorporates the evaluation of the student's solution. Various methods of grading can be set at design time, depending on the particular purpose that a test is used for (self-assessment or administrative exam). Each test is equipped with the correct solution presentation on demand. In those problems that involve a considerable amount of computational effort (e.g. Gauss elimination), additional special tools are offered in a test window so that the student can concentrate on the method of solution rather than on arithmetic computations. (Another obvious benefit is that the student is thus protected from the risk of frustrating computational errors). Individual tests can be combined into comprehensive exams whose parameters can be set up at design time (e.g., number of problems, difficulty level, grading system, time allowed for solution). The results of an exam can be automatically stored in a database with all authentication and security requirements satisfied.
  • Comparing the IT skills and the programming knowledge of Hungarian students specialized in informatics with Romanian students attending a science course or a mathematics-informatics course
    21-40
    Views:
    33
    The goal of this research is an analysis of the IT skills and programming knowledge of Hungarian and Romanian students attending a Science course or a Mathematics-Informatics course. Analysed was how effectively can students from different grades answer questions dealing with different subjects. After having evaluated the test results correctness of the original presumption emerged. Significance level was 5% through the analysis. Significant divergency in knowledge of Hungarian students and Romanian students of Humanities (Profil Uman) was found in 11th and 12th grades too. Romanian students attending a science course (Profil Real) and a Mathematics-Informatics course scored higher in programming than their Hungarian counterparts specialized in Informatics in the 11th grade. After the evaluation a final conclusion can be made: Romanian students of the Real Profile have the same or more practice in programming than Hungarian students specialized in Informatics, though the latters have the same or better IT skills. Unfortunately, Hungarian teachers concentrate on word processing and spreadsheet calculation and teach programming just for the students specialized in Informatics, although algorithm thinking would be important for every student before finishing secondary school.
  • Nice tiling, nice geometry!?!
    269-280
    Views:
    38
    The squared papers in our booklets, or the squared (maybe black and white) pavements in the streets arise an amusing problem: How to deform the side segments of the square pattern, so that the side lines further remain equal (congruent) to each other? More precisely, we require that each congruent transformation of the new pattern, mapping any deformed side segment onto another one, leaves the whole (infinitely extended) pattern invariant (unchanged).
    It turns out that there are exactly 14 types of such edge-transitive (or so-called isotoxal) quadrangle tilings, sometimes with two different forms (e.g. black and white) of quadrangles (see Figure 2). Such a collection of tiling can be very nice, perhaps also useful for decorative pavements in streets, in flats, etc.
    I shall sketch the solution of the problem that leads to fine (and important) mathematical concepts (as barycentric triangulation of a polygonal tiling, adjacency operations, adjacency matrix, symmetry group of a tiling, D-symbol, etc). All these can be discussed in an enjoyable way, e.g. in a special mathematical circle of a secondary school, or in more elementary form as visually attractive figures in a primary school as well.
    My colleague, István Prok [11] developed an attractive computer program on the Euclidean plane crystallographic groups with a nice interactive play (for free download), see our Figures 3-5.
    A complete classification of such Euclidean plane tilings (not only with quadrangles) can be interesting for university students as well, hopefully also for the Reader (Audience). This is why I shall give some references, where you find also other ones.
    Further problems indicate the efficiency of this theory now. All these demonstrate the usual procedure of mathematics and the (teaching) methodology as well: We start with a concrete problem, then extend it further, step-by-step by creating new manipulations, concepts and methods. So we get a theory at certain abstraction level. Then newer problems arise, etc.
    This paper is an extended version of the presentation and the conference paper [7]. The author thanks the Organizers, especially their head Professor Margita Pavlekovic for the invitation, support and for the kind atmosphere of the conference.
  • The development of geometrical concepts in lower primary mathematics teaching: the square and the rectangle
    153-171
    Views:
    41
    Our research question is how lower primary geometry teaching in Hungary, particularly the concept of squares and rectangles is related to the levels formulated by van Hiele. Moreover to what extent are the concrete activities carried out at these levels effective in evolving the concepts of squares and rectangles.
    In the lower primary geometry teaching (classes 1-4) the first two stages of the van Hiele levels can be put into practice. By the completion of lower primary classes level 3 cannot be reached. Although in this age the classes of concepts (rectangles, squares) are evolved, but there is not particular relationship between them. The relation of involvement is not really perceived by the children.
  • Engineering and Economic Mathematics for Engineering Management Students
    35-50
    Views:
    34
    In this article we describe the first part of a case study, which was made with 48 Engineering Management students. The participants of the case study were MSc level students at the Szent István University, Gödöllő. We looked for methods by which we can support the most important components of competence motivation and the development of mathematical and other key competences during the mathematics lessons and individual learning. Another goal of our research was to get reliable information about students learning methods and their awareness of self-efficacy, furthermore their achievement in the subject of Engineering and Economic Mathematics. Detailed assistance was provided for the students in the e-learning portal. Knowledge tests, questionnaire and personal interviews with the students were also used. As an example we introduce one of the knowledge tests connected with the first half of the course about linear programming and graph theory. We detail its didactical background and show the results of the students.
  • Teaching word processing – the practice
    247-262
    Views:
    20
    I compared two surveys, which were aimed to check the word processing ability of students in high schools and universities. The surveys were carried out ten years apart from one another, in 1997 and 2006. The results clearly show that most of the students are not able to use word processors properly. In the survey of 1997 I found explanation for this underperformance in the lack of computers and teachers. However, the results of the second survey did not prove any better than the results of the first, and in 2006 neither the number of computers nor the number of teachers can be blamed. What else then? I suggest that the reason for this general ignorance, for this `modern illiteracy' is the ignorance of the teachers. Until the teachers are not prepared and the senior students of the universities leave the education system without a proper knowledge of the required subjects, there is little chance that they would be able to teach word processing at a satisfactory level.
  • The mathematics textbook as an aid to differentiation: a first Hungarian example
    35-53
    Views:
    24
    Differentiation is a way of teaching where each student is taught according to his/her personal needs. This technique is not widely used in Hungary yet, although this would be necessary due to the introduction of the two-level final examination and to a growing concern for equal opportunities and integrated teaching. One of the most significant aids to differentiation is an appropriate textbook, and that is why a group of professionals wrote a set of textbooks that supports this technique. The paper examines the requirements for a differentiated textbook, and the extent to which the textbook in question meets them.
  • Teaching puzzle-based learning: development of transferable skills
    245-268
    Views:
    36
    While computer science and engineering students are trained to recognise familiar problems with known solutions, they may not be sufficiently prepared to address novel real-world problems. A successful computer science graduate does far more than just program and we must train our students to reach the required levels of analytical and computational thinking, rather than hoping that it will just 'develop'. As a step in this direction, we have created and experimented with a new first-year level course, Puzzle-based Learning (PBL), that is aimed at getting students to think about how to frame and solve unstructured problems. The pedagogical goal is increase students' mathematical awareness and general problem solving skills by employing puzzles, which are educational, engaging, and thought provoking. In this paper we continue sharing our experiences in teaching such a course. Whereas a brief discussion on our pedagogical objectives were covered in the first paper together with the material of the first of two lectures on pattern recognition, this follow-up paper presents the material of the second of two lectures, in which additional exercises are discussed to reinforce the lesson. Along the way we provide a glimpse of some foundational ideas of computer science such as incomputability and general system development strategies such as incremental and iterative reasoning. This paper discusses the outcomes of PBL courses, which include expected improvement in the overall results achieved by students who have undertaken PBL courses, compared to those students who have not.
  • Darstellungen und Vorstellungen und ihre Bedeutung für eine wirksame Metakognition beim Problemlösen und Begründen
    195-220
    Views:
    26
    Metacognition has one of the highest effect sizes concerning successful learning. However metacognitive activities during task solving and problem solving are not directly obvious. But they can appear by writing someone's thoughts down. The following analysis, which focusses on the level of argumentation as well as on the way of derivation, shows that the quality of representation is an essential condition for the possibility of metacognition.
  • Our digital education habits in the light of their environmental impact: the role of green computing in education
    69-86
    Views:
    121

    With the increasing use of IT tools, the environmental impacts they generate have also increased. Education is increasingly relying on digital tools to become a major emitter of CO2 itself. Therefore, the task of education is to teach future generations how to use IT tools efficiently while being environmentally aware. In addition to some forms of green computing, we show the level and ratio of those teachers who have corresponding IT knowledge in the Hungarian education. In this study, we present the justification of the problem through a case study, which estimates the Internet traffic of a website streaming popular educational resources. In addition, we will examine the extent to which national and international educational organization and guidance documents address the development of digital environmentally aware thinking. Based on the content of this study, we suggest some considerations for content developers to decide if they really need to create the digital content.

    Subject Classification: 97P99, 94-06, 94-02

  • Examples of analogies and generalizations in synthetic geometry
    19-39
    Views:
    29
    Teaching tools and different methods of generalizations and analogies are often used at different levels of education. Starting with primary grades, the students can be guided through simple aspects of collateral development of their studies. In middle school, high school and especially in entry-level courses in higher education, the extension of logical tools are possible and indicated.
    In this article, the authors present an example of generalization and then of building the analogy in 3-D space for a given synthetic geometric problem in 2-D.
    The idea can be followed, extended and developed further by teachers and students as well.
  • Writing a textbook – as we do it
    185-201
    Views:
    17
    Recent surveys studying mathematics teaching show that there is a great variety in the level of mathematics teaching in Hungary. To increase efficiency (and decrease differences between schools) it is essential to create textbooks with new attitudes. The experiment we started after the PISA survey of 2000, produced a textbook that is new, in some sense even unusual in its attitude and methods. This paper presents the experiences we gained in the course of this work.
  • Teaching puzzle-based learning: development of basic concepts
    183-204
    Views:
    17
    While computer science and engineering students are trained to recognise familiar problems with known solutions, they may not be sufficiently prepared to address novel real-world problems. A successful computer science graduate does far more than just program and we must train our students to reach the required levels of analytical and computational thinking, rather than hoping that it will just 'develop'. As a step in this direction, we have created and experimented with a new first-year level course, Puzzle-based Learning (PBL), that is aimed at getting students to think about how to frame and solve unstructured problems. The pedagogical goal is increase students' mathematical awareness and general problem solving skills by employing puzzles, which are educational, engaging, and thought provoking. We share our experiences in teaching such a course – apart from a brief discussion on our pedagogical objectives, we concentrate on discussing the presented material which covers (in two lectures) just one selected topic (pattern recognition). In this paper we present the ideas behind foundations for PBL and the material of the first of two lectures on pattern recognition, in which we address core concepts and provide students with sufficient exemplars to illustrate the main points.
  • Task reformulation as a practical tool for formation of electronic digest of tasks
    1-27
    Views:
    34
    Creative thinking as well as thinking itself is being developed at active learning-cognitive activity of students. To make mathematic matter a subject of interest and work of students at classes, it is efficacious to submit it in a form of tasks. The tasks may be set up in a purposeful system of tasks by means of which reaching the teaching goals in the sense of quality and durability of gained knowledge may be more effective. A suitable means for presentation of tasks with their characteristics (as e.g. didactic function and cognitive level) as well as task systems themselves is an electronic digest of tasks as a database. The analysis of textbooks and digests of tasks commonly used at schools in Slovakia shows that they do not include all the types of tasks necessary for setting up complete (in the sense of didactic functions) task systems. One of the most important methods used for formation of the missing tasks is reformulation of tasks. The individual strategies of task reformulation are explained in details on examples in this article.
  • The efficiency of written final exam questions in mathematics based on voluntary data reports, 2012–2015
    63-81
    Views:
    35
    The efficiency of each question in the mathematics written final exam is not recorded by the institutions organizing the graduation exam. In order to overcome this deficiency the committee of final exams in mathematics and the Hungarian Educational Authority ask schools to send – beyond the total marks obtained on the paper – the scores of each question of all individual candidates to the Authority every year since 2012. Because a high proportion of schools complied with this request between 2012 and 2015, the researchers were provided valuable information for a deeper analysis on the effectiveness of exams. In this paper we have carried out an analysis of the efficiency of questions set in the written examination papers both on the intermediate and on the higher level in the last four years, on the basis of these voluntary data reports.
  • An e-learning environment for elementary analysis: combining computer algebra, graphics and automated reasoning
    13-34
    Views:
    34
    CreaComp is a project at the University of Linz, which aims at producing computer-supported interactive learning units for several mathematical topics at introductory university level. The units are available as Mathematica notebooks. For student experimentation we provide computational, graphical and reasoning tools as well. This paper focuses on the elementary analysis units.
    The computational and graphical tools of the CreaComp learning environment facilitate the exploration of new mathematical objects and their properties (e.g., boundedness, continuity, limits of real valued functions). Using the provided tools students should be able to collect empirical data systematically and come up with conjectures. A CreaComp component allows the formulation of precise conjectures and the investigatation of their validity. The Theorema system, which has been integrated into the CreaComp learning environment, provides full predicate logic with a user-friendly twodimensional syntax and a couple of automated reasoners that produce proofs in an easy-to-read and natural presentation. We demonstrate the learning situations and the provided tools through several examples.
  • A first course in computer science: languages and goals
    137-152
    Views:
    17
    The College Board Advanced Placement exam in computer science will use the language Java starting in fall 2003. The language chosen for this exam is based on the language commonly taught in introductory computer science courses at the university level. This article reviews the purpose of an introductory course and the various suggestions for the curriculum of introductory courses published by the Association for Computing Machinery. It then proposes that such a course stress foundational concepts over specific language syntax, and then provides a list of such foundational concepts and related topics. Based on this fundamental curriculum, the article recommends C++ as the most appropriate language. An appendix provides a sample syllabus.
  • Implementation opportunities of the Moodle learning management system in virtual environment the Sloodle project
    275-293
    Views:
    30
    Using e-learning was firstly appeared in companies' sphere. It should be very useful if learning management systems were applied. Nowadays e-learning is used in different fields and gives useful informations in case of basics and its knowledge. It is essential to know the arranging technics and applicated handling methods of some supporting learning management systems of e-learning. The Moodle is the best-known learning management system.
    The Second Life is one of the virtual environments which is useful in learning-teaching methods that is used in most educational institute all over the world. Sloodle is an open source project which connects the Second Life with Moodle learning management system. Sloodle is a kind of "bridge" in which different kind of activities and registering and provided in both Moodle and Second Life.
    In our department, University of Debrecen Health Faculty of Nyíregyháza ILIAS learning management system has operated since February, 2008. In the interest of higher level education we decided to use and made available some courses through Moodle learning management system.
    Some tools of Sloodle will be presented in our article. It will be the first study for our research in which we would use the Moodle learning management system, the virtual environment of Second Life and the project of Sloodle itself. Our article will contain the starting details and its statistical confirmation of our Sloodle project. We like to demonstrate that the results of the Sloodle-aided group are significantly better than the results of the control group in the most cases.
  • Analysis of the affective factors of learning mathematics among teacher trainees
    225-254
    Views:
    37
    The Hungarian National Core Curricula gives primacy to the development of abilities and the practical application of knowledge. The task of the training programme is primarily to prepare teacher trainees for the teaching and educating profession. As teachers, they are going to plan, organize, help, guide, control and evaluate the learning of mathematics of individuals and groups of students from the age of 6 to 10 (12), and cultivate their mathematical skills, thinking and positive attitude towards any mathematical activities. In order to train educators who are able to meet the above requirements on high standard, it is necessary to update the teacher training programme based on the trainees' preliminary knowledge and motivation level.
    The key to learn about the child's mind and achieve conscious development is the systematization of factual knowledge and methodological awareness. The modern, flexible approach to subject pedagogy, based on pedagogy, psychology and epistemology, qualifies trainees to educate learners who understand and like mathematics. Therefore, it is essential to develop the trainees' positive approach to mathematics and arouse their demand for continuous professional improvement. (Programme of the four-year primary school teacher training, 1995.)
    In our research we are looking for ways of ascertaining the starting parameters which have influence on the planning of the studies of mathematics and subject pedagogy. In this article we introduce a questionnaire by the means of which we collected information on the trainees' attitude and its changing towards mathematics. With the help of the analysis of the answers we paint a picture of the ELTE TÓFK (Eötvös Loránd University, Faculty of Elementary and Nursery School Teacher's Training) third year students' attitude to the subject, and we compare it to the tendencies noticed in the mass education. The energy invested in learning is influenced by the assumption of the relevance and importance of the subjects. Therefore we considered it also our task to reveal. Besides the students' attitude toward mathematics and their assumption about their own competence we have collected data also on their performance in the subject. Summarising the research results we show the advantages of the questionnaire, and summarise the observations which would indicate need for methodological changes in the mathematics teacher training.