Search
Search Results
-
Comparing the IT skills and the programming knowledge of Hungarian students specialized in informatics with Romanian students attending a science course or a mathematics-informatics course
21-40Views:33The goal of this research is an analysis of the IT skills and programming knowledge of Hungarian and Romanian students attending a Science course or a Mathematics-Informatics course. Analysed was how effectively can students from different grades answer questions dealing with different subjects. After having evaluated the test results correctness of the original presumption emerged. Significance level was 5% through the analysis. Significant divergency in knowledge of Hungarian students and Romanian students of Humanities (Profil Uman) was found in 11th and 12th grades too. Romanian students attending a science course (Profil Real) and a Mathematics-Informatics course scored higher in programming than their Hungarian counterparts specialized in Informatics in the 11th grade. After the evaluation a final conclusion can be made: Romanian students of the Real Profile have the same or more practice in programming than Hungarian students specialized in Informatics, though the latters have the same or better IT skills. Unfortunately, Hungarian teachers concentrate on word processing and spreadsheet calculation and teach programming just for the students specialized in Informatics, although algorithm thinking would be important for every student before finishing secondary school. -
A constructive and metacognitive teaching path at university level on the Principle of Mathematical Induction: focus on the students' behaviours, productions and awareness
133-161Views:123We present the main results about a teaching/learning path for engineering university students devoted to the Principle of Mathematical Induction (PMI). The path, of constructive and metacognitive type, is aimed at fostering an aware and meaningful learning of PMI and it is based on providing students with a range of explorations and conjecturing activities, after which the formulation of the statement of the PMI is devolved to the students themselves, organized in working groups. A specific focus is put on the quantification in the statement of PMI to bring students to a deep understanding and a mature view of PMI as a convincing method of proof. The results show the effectiveness of the metacognitive reflections on each phase of the path for what concerns a) students' handling of structural complexity of the PMI, b) students' conceptualization of quantification as a key element for the reification of the proving process by PMI; c) students' perception of the PMI as a convincing method of proof.
Subject Classification: 97B40, 97C70
-
Engineering and Economic Mathematics for Engineering Management Students
35-50Views:34In this article we describe the first part of a case study, which was made with 48 Engineering Management students. The participants of the case study were MSc level students at the Szent István University, Gödöllő. We looked for methods by which we can support the most important components of competence motivation and the development of mathematical and other key competences during the mathematics lessons and individual learning. Another goal of our research was to get reliable information about students learning methods and their awareness of self-efficacy, furthermore their achievement in the subject of Engineering and Economic Mathematics. Detailed assistance was provided for the students in the e-learning portal. Knowledge tests, questionnaire and personal interviews with the students were also used. As an example we introduce one of the knowledge tests connected with the first half of the course about linear programming and graph theory. We detail its didactical background and show the results of the students. -
Game theory for managers and mechanical manager students
73-91Views:25In this article we describe the second part of a case study, in which 48 Mechanical Management students were involved. The participants of the case study were MSc level students at Szent István University, Gödöllő.
In the case study we looked for methods by which we can support the most important components of competence motivation and the development of mathematical and other key competences during the mathematics lessons and individual learning.
Another goal of our research was to get reliable information about students learning methods and their awareness of self-efficiency, furthermore their achievement in the subject of Engineering and Economic Mathematics.
Detailed assistance was provided for the students in the e-learning portal. Knowledge tests, questionnaire and personal interviews with the students were also used.
During the semester four topics have been discussed: linear programming, graph theory, game theory and differential equations. In this article I will describe the lesson preparations, the help for examinations and the students' achievement on game theory. -
The role of representations constructed by students in learning how to solve the transportation problem
129-148Views:107The purpose of the research presented in this paper was to study the role of concrete and table representations created by students in learning how to solve an optimization problem called the transportation problem. This topic was learned in collaborative groups using table representations suggested by teachers in 2021. In 2022, the researchers decided to enrich the students’ learning environment with concrete objects and urged the students to use them to present the problem to be solved. The students did it successfully and, to be able to record it in their notebooks, they constructed a table representation by themselves without any help from their teacher. After that, they managed to solve the problem by manipulating the objects. At the same time, each step in the solution was presented with changes in the table. The students were assessed before (pre-test) and after collaborative learning (test) in both academic years. The pre-test results were similar, but the test results were better in 2022. Therefore, it can be concluded that using concrete and table representations constructed by students in learning how to solve transportation problems makes collaborative learning more constructivist and more effective than when they use only table representations suggested by their teachers.
Subject Classification: 97M10, 97M40
-
How do secondary school students from the Kurdistan Region of Iraq understand the concept of function?
221-244Views:150The study investigates secondary school students' understanding of the concept of function. The paper focuses on three main aspects: students' ability to define the concept of function; students' ability to recognize different representations of function; and students' ability to convert between different representations. A test was developed to assess the three main constructs of the study and administered to 342 students in secondary schools in the Kurdistan Region of Iraq. According to the results, students have diffculties in recognizing different representations of function and conversion between them. Connections between different parts of the test may provide hints on educational challenges of how to appropriately teach functions.
Subject Classification: 26Bxx, 97D60
-
The effect of augmented reality assisted geometry instruction on students' achiveement and attitudes
177-193Views:59In this study, geometry instruction's academic success for the students and their attitudes towards mathematics which is supported by education materials of Augmented Reality (AR) and its effect on the acceptance of AR and its usage by teachers and students have been researched. Under this research, ARGE3D software has been developed by using augmented reality technology as for the issue of geometric objects that is contained in the mathematics curriculum of 6th class of primary education. It has been provided with this software that three-dimensional static drawings can be displayed in a dynamic and interactive way. The research was conducted in two different schools by an experiment and control group. In the process of data collection, Geometry Achievement Test (GAT), Geometric Reasoning Test (GRT), Attitudes Scale for Mathematics (ASM), students' math lecture notes, semi-structured interviews with teachers and students and observation and video recordings were used. Results showed that geometry instruction with ARGE3D increased students' academic success. In addition, it was found that geometry instruction with ARGE3D became more effective on students' attitudes that had negative attitudes towards mathematics and it also provided support to reduce fear and anxiety. -
Levels of students' understanding on infinity
317-337Views:24Here we report some results of a two-year study for grades 5-6 and 7-8 (during the academic years 2001-03). The study included a quantitative survey for approximately 150 Finnish mathematics classes out of which 10 classes were selected to a longitudinal part of the study. Additionally, 40 students from these classes participated also a qualitative study. This paper will focus on students' understanding of infinity and the development of that understanding. The results show that most of the students did not have a proper view of infinity but that the share of able students grew, as the students got older. -
Solution of an open reality based word-problem in two secondary schools
143-156Views:106This survey through an open reality based word problem is intended to assess - in two secondary schools in Komárom (Hungary) and in Komarno (Slovakia, Hungarian name: Révkomárom) in grade 10 - the ability of students to realize openness of a task. The comparison is justified by the fact that the language of teaching is Hungarian in both secondary schools, but with different curricula. This survey is related to the Content Pedagogy Research Program by the Hungarian Academy of Sciences. It is preceded by several surveys with a word problem (Pocket Money) of the third author and led by her between 2012 and 2015, and within that project in 2017 within a large sample test, among about 1500 students and university students in Hungary (?, ?) (?, ?). In our research we wanted first to assess how openly work students in two schools of the two cities mentioned in solving the same task. The answer to this question was similar to the large sample test results, so most of the students worked in a closed way, when solving this word problem. So we went on and tried to explore how students thought about their own solution given to this task, through mixed-type interviews.
Subject Classification: 97D70, 97F90, 97D50, 97M10
-
Promoting a meaningful learning of double integrals through routes of digital tasks
107-134Views:179Within a wider project aimed at innovating the teaching of mathematics for freshmen, in this study we describe the design and the implementation of two routes of digital tasks aimed at fostering students' approach to double integrals. The tasks are built on a formative assessment frame and classical works on problem solving. They provide facilitative and response-specific feedback and the possibility to request different hints. In this way, students may be guided to the development of well-connected knowledge, operative and decision-making skills. We investigated the effects of the interaction with the digital tasks on the learning of engineering freshmen, by comparing the behaviours of students who worked with the digital tasks (experimental group, N=19) and students who did not (control group, N=19). We detected that students in the experimental group showed more exibility of thinking and obtained better results in the final exam than students in the control group. The results confirmed the effectiveness of the experimental educational path and offered us interesting indications for further studies.
Subject Classification: 97D40, 97U70, 44A45
-
Teaching puzzle-based learning: development of transferable skills
245-268Views:36While computer science and engineering students are trained to recognise familiar problems with known solutions, they may not be sufficiently prepared to address novel real-world problems. A successful computer science graduate does far more than just program and we must train our students to reach the required levels of analytical and computational thinking, rather than hoping that it will just 'develop'. As a step in this direction, we have created and experimented with a new first-year level course, Puzzle-based Learning (PBL), that is aimed at getting students to think about how to frame and solve unstructured problems. The pedagogical goal is increase students' mathematical awareness and general problem solving skills by employing puzzles, which are educational, engaging, and thought provoking. In this paper we continue sharing our experiences in teaching such a course. Whereas a brief discussion on our pedagogical objectives were covered in the first paper together with the material of the first of two lectures on pattern recognition, this follow-up paper presents the material of the second of two lectures, in which additional exercises are discussed to reinforce the lesson. Along the way we provide a glimpse of some foundational ideas of computer science such as incomputability and general system development strategies such as incremental and iterative reasoning. This paper discusses the outcomes of PBL courses, which include expected improvement in the overall results achieved by students who have undertaken PBL courses, compared to those students who have not. -
Development of high school students' geometric thinking with particular emphasis on mathematically talented students
93-110Views:15We carried out research using Zalman Usiskin's test (1982) and also a modified version of his test to see how the geometric approach of secondary school students (Grades 8-10) specialized in mathematics had changed. We observed two groups of students for several years. Our aim was to find a relation between the change of the mean of the van Hiele level of the students and the structure of the geometry syllabus. We also observed if there was a change in the geometric approach of the students during the summer holidays and if so, in what way it changed. -
The appearance of the characteristic features of the mathematical thinking in the thinking of a chess player
201-211Views:34It is more and more important in 21st century's education that not only facts and subject knowledge should be taught but also the ways and methods of thinking should be learnt by students. Thinking is a human specificity which is significant both in mathematics and chess. The exercises aimed at beginner chess players are appropriate to demonstrate to students the mathematical thinking of 12-14 year-old students.
Playing chess is an abstract activity. During the game we use abstract concepts (e.g. sacrifice, stalemate). When solving a chess problem we use logical quantifiers frequently (e.g. in the case of any move of white, black has a move that...). Among the endgames we find many examples (e.g. exceptional draw options) that state impossibility. Affirmation of existence is frequent in a mate position with many moves. We know there is a mate but the question in these cases is how it can be delivered.
We present the chess problem on beginners' level although these exercises appear in the game of advanced players and chess masters too, in a more complex form. We chose the mathematical tasks from arithmetic, number theory, geometry and the topic of equations. Students encounter these in classes, admission exams and student circles. Revealing the common features of mathematical and chess thinking shows how we can help the development of students' mathematical skills with the education of chess. -
Teaching puzzle-based learning: development of basic concepts
183-204Views:17While computer science and engineering students are trained to recognise familiar problems with known solutions, they may not be sufficiently prepared to address novel real-world problems. A successful computer science graduate does far more than just program and we must train our students to reach the required levels of analytical and computational thinking, rather than hoping that it will just 'develop'. As a step in this direction, we have created and experimented with a new first-year level course, Puzzle-based Learning (PBL), that is aimed at getting students to think about how to frame and solve unstructured problems. The pedagogical goal is increase students' mathematical awareness and general problem solving skills by employing puzzles, which are educational, engaging, and thought provoking. We share our experiences in teaching such a course – apart from a brief discussion on our pedagogical objectives, we concentrate on discussing the presented material which covers (in two lectures) just one selected topic (pattern recognition). In this paper we present the ideas behind foundations for PBL and the material of the first of two lectures on pattern recognition, in which we address core concepts and provide students with sufficient exemplars to illustrate the main points. -
Transition from arithmetic to algebra in primary school education
225-248Views:35The main aim of this paper is to report a study that explores the thinking strategies and the most frequent errors of Hungarian grade 5-8 students in solving some problems involving arithmetical first-degree equations. The present study also aims at identifying the main arithmetical strategies attempted to solve a problem that can be solved algebraically. The analysis focuses on the shifts from arithmetic computations to algebraic thinking and procedures. Our second aim was to identify the main difficulties which students face when they have to deal with mathematical word problems. The errors made by students were categorized by stages in the problem solving process. The students' written works were analyzed seeking for patterns and regularities concerning both of the methods used by the students and the errors which occured in the problem solving process. In this paper, three prominent error types and their causes are discussed. -
An interactive animation for learning sorting algorithms: How students reduced the number of comparisons in a sorting algorithm by playing a didactic game
45-62Views:36Learning programming and understanding algorithms is one of the hardest tasks for novice computer science students. One of the basic algorithms they learn during the introductory programming and algorithms courses are the sorting algorithms. Students like learning these and other algorithms by animations and didactic games, however, these animations are not educationally useful in every case. In this article, we present our educational sorting game, which can be used to introduce the topic of sorting algorithms. The didactic game can be used later too, as a demonstrative tool for explaining the more efficient, quicksort algorithm. We conducted a pedagogical experiment, in which we examined the process of development of sorting algorithms by students while they used the mentioned didactic game. The results showed that students were able to create an algorithm to solve the sorting problem, and they improved its effectiveness by reducing the number of comparisons in the algorithm. They were also able to understand the importance of the efficiency of algorithms when we demonstrated them the quicksort algorithm using the same tool after the experiment. -
Capturing how students' abilities and teaching experiences affect teachers' beliefs about mathematics teaching and learning
195-212Views:125We developed an instrument to investigate the effect of students' abilities and teaching experiences on teachers' beliefs about teaching and learning of mathematics. In this pilot study, we used the instrument to measure the beliefs of 43 Indonesian math teachers and five additional teachers. Then, for further investigation, we interviewed those five additional teachers. Results from the 43 teachers' responses to the instrument show that in contrast to teachers with less than five years of teaching, teachers with more than five years elicit significantly different beliefs about mathematics teaching and learning in different contexts related to students' abilities. Teachers' reports in the further investigation indicate that teaching experiences with high and low ability students in teaching mathematics could be a possible explanation of this contrast.
Subject Classification: C20
-
CAS-aided visualization in LATEX documents for mathematical education
1-18Views:26We have been developing KETpic as a macro package of a CAS for drawing fine LATEX-pictures, and we use it efficiently in mathematical education. Printed materials for mathematics classes are prepared under several constraints, such as "without animation", "mass printings", "monochrome", and "without halftone shadings". Because of these constraints, visualization in mathematical education tends to be unsatisfactory. Taking full advantages of LATEX and CAS, KETpic enables us to provide teaching materials with figures which are effective for mathematical education. The effects are summarized as follows:
(1) The plottings of KETpic are accurate due to CAS, and enable students to deduce mathematical laws.
(2) KETpic can provide adequate pictures for students' various interest. For example, when some students who understand a matter try to modify it, KETpic can give them appropriate and experimental figures.
(3) Even though CAS can draw 3D-figures beautifully and automatically, it is expensive for mass printings and the figures are sometimes not easy to understand. Oppositely, 3D-graphics by KETpic are monochrome, but are richly expressive.
In this paper, we give various examples of LATEX-pictures which we drew by using KETpic. For instance, the picture which is used in order to explain the convergence theorem of Fourier series makes it easier for students to understand the idea that function series converge to another function. Also the picture of skeleton is endowed with clear perspective. KETpic gives us great potential for the teaching of combinatorial mathematics. Through these examples, we claim that KETpic should have great possibilities of rich mathematical expressions under the constraints above mentioned. -
The use of e-tests in education as a tool for retrieval practice and motivation
59-76Views:93In many studies we can read about what techniques are used in the educational process to deepen knowledge, and what can motivate students to learn. We aimed to give our students (who will be a teacher) a practical demonstration of learning techniques. We carried it within the framework of a course, at the end of which we also examined how much it motivates students if they write an e-test as a retrospective in order to deepen the material of the lesson. In the paper, we will present the results of the research as well as students’ opinions regarding the motivating effect of the tests.
Subject Classification: 97-01, 97D40, 97I10
-
Examining relation between talent and competence through an experiment among 11th grade students
17-34Views:31The areas of competencies that are formable, that are to be formed and developed by teaching mathematics are well-usable in recognizing talent. We can examine the competencies of a student, we can examine the competencies required to solve a certain exercise, or what competencies an exercise improves.
I studied two exercises of a test taken by students of the IT specialty segment of class 11.d of Jedlik Ányos High School, a class that I teach. These exercises were parts of the thematic unit of Combinatorics and Graph Theory. I analysed what competencies a gifted student has, and what competencies I need to improve while teaching mathematics. I summarized my experience about the solutions of the students, the ways I can take care of the gifted students, and what to do to the less gifted ones. -
Understanding the spatiotemporal sample: a practical view for teaching geologist students
89-99Views:25One of the most fundamental concept of statistics is the (random) sample. Our experience – acquired during the years of undergraduate education – showed that prior to industrial practice, the students in geology (and, most probably, in many other non-mathematics oriented disciplines as well) are often confused by the possible multiple interpretation of the sample. The confusion increases even further, when samples from stationary temporal, spatial or spatio-temporal phenomena are considered. Our goal in the present paper is to give a viable alternative to this overly mathematical approach, which is proven to be far too demanding for geologist students.
Using the results of an environmental pollution analysis we tried to show the notion of the spatiotemporal sample and some of its basic characteristics. On the basis of these considerations we give the definition of the spatiotemporal sample in order to be satisfactory from both the theoretical and the practical points of view. -
Using the computer to visualise graph-oriented problems
15-32Views:31The computer, if used more effectively, could bring advances that would improve mathematical education dramatically, not least with its ability to calculate quickly and display moving graphics. There is a gap between research results of the enthusiastic innovators in the field of information technology and the current weak integration of the use of computers into mathematics teaching.
This paper examines what exactly the real potentials of using some mathematics computer software are to support mathematics teaching and learning in graph-oriented problems, more specifically we try to estimate the value added impact of computer use in the mathematics learning process.
While electronic computation has been used by mathematicians for five decades, it has been in the hands of teachers and learners for at most three decades but the real breakthrough of decentralised and personalised micro-computer-based computing has been widely available for less than two decades. And it is the latter facility that has brought the greatest promise for computers in mathematics education. That computational aids overall do a better job of holding students' mathematical interest and challenging them to use their intellectual power to mathematical achievement than do traditional static media is unquestionable. The real question needing investigation concerns the circumstances where each is appropriate.
A case study enabled a specification of advantages and obstacles of using computers in graph-oriented questions. Individual students' interviews revealed two less able students' reactions, difficulties and misinterpretations while using computers in mathematics learning.
Among research outcomes is that the mathematical achievement of the two students observed improved and this makes teaching with computers an overriding priority for each defined teaching method.
This paper may not have been realised without the valuable help of the Hungarian Eötvös State Grant. -
Teaching integral transforms in secondary schools
241-260Views:33Today, Hungarian students in the secondary schools do not know the idea of complex numbers, and they can not integrate except those ones who learn mathematics in advance level. Without this knowledge we can teach Fourier transform for students. Why should we teach Fourier transform (FT) or Wavelet transform (WT) for them? To teach image file formats like JPEG, (JPEG2000) we need to talk about integral transforms. For students who are good in computer programming, writing the program of 1D FT or 2D FT is a nice task. In this article we demonstrate how we can teach Fourier and Wavelet transform for students in secondary school. -
Research studies in didactics of mathematics supported by the Operant Motive Test
153-173Views:33The present paper reports a case-study which took place within an EUsupported international program organized for research and development of multi-grade schools (NEMED, [16] [26]). One of the main goals of the research was to develop the connection between disadvantageous social situations and the efficiency (success or failure) in learning mathematics especially from the point of view of average and above-average (talented) students: Why does the talent of children with socially disadvantageous background remain undiscovered? How can we make school mathematics more aware of hidden talents?
The author was looking for a didactical solution that compensated for social disadvantages without restricting the development of "average" students by using sociological, educational, psychological and mathematical (experimental and theoretical) studies in interaction with a series of experimental (hypothesis testing and exploratory) investigations.
We constructed tools and methods for exploration and experimental teaching, adapted to Hungarian conditions (Curriculum Development, teacher training, materials, interviews, Kuhl's motivation test, Malara's "researchers and practicing teachers in cooperation" method, etc., see [18], [20]).
The teaching materials and methodological guidelines are based on Bruner's representation theory (see [5]). The empirical research took place in 16 multi-grade schools located in different parts of the country. The author co-operated with nearly 250 students and 25 teachers for 3 years. In this paper we try to demonstrate how an Operant Motive Test can be involved in this research (see [18]). -
Teaching word processing – the practice
247-262Views:20I compared two surveys, which were aimed to check the word processing ability of students in high schools and universities. The surveys were carried out ten years apart from one another, in 1997 and 2006. The results clearly show that most of the students are not able to use word processors properly. In the survey of 1997 I found explanation for this underperformance in the lack of computers and teachers. However, the results of the second survey did not prove any better than the results of the first, and in 2006 neither the number of computers nor the number of teachers can be blamed. What else then? I suggest that the reason for this general ignorance, for this `modern illiteracy' is the ignorance of the teachers. Until the teachers are not prepared and the senior students of the universities leave the education system without a proper knowledge of the required subjects, there is little chance that they would be able to teach word processing at a satisfactory level.