Search
Search Results
-
Pólya’s influence on (my) research
161-171Views:245In this article, I outline the influence of George Pólya's work on research in different areas and especially on mathematics education, namely heuristics and models of the problem-solving process. On a more personal note, I will go into some details regarding Pólya's influence on my own work in mathematical problem solving with a focus on the research project for my PhD thesis.
Subject Classification: 97xxx
-
The Frobenius exchange problem on competitions and in classroom
203-218Views:51Let a_1, ..., a_n be relatively prime positive integers. The still unsolved Frobenius problem asks for the largest integer which cannot be represented as Σ x_i a_i with non-negative integers xi, and also for the number of non-representable positive integers. These and several related questions have been investigated by many prominent mathematicians, including Paul Erdős, and a wide range of partial results were obtained by various interesting methods differing both in character and difficulty. In this paper we give a self-contained introduction to this field through problems and comments suitable also for treatment in a class of talented students. -
Simple Variations on The Tower of Hanoi: A Study of Recurrences and Proofs by Induction
131-158Views:333The Tower of Hanoi problem was formulated in 1883 by mathematician Edouard Lucas. For over a century, this problem has become familiar to many of us in disciplines such as computer programming, algorithms, and discrete mathematics. Several variations to Lucas' original problem exist today, and interestingly some remain unsolved and continue to ignite research questions. Nevertheless, simple variations can still lead to interesting recurrences, which in turn are associated with exemplary proofs by induction. We explore this richness of the Tower of Hanoi beyond its classical setting to compliment the study of recurrences and proofs by induction, and clarify their pitfalls. Both topics are essential components of any typical introduction to algorithms or discrete mathematics.
Subject Classification: A20, C30, D40, D50, E50, M10, N70, P20, Q30, R20
-
Transition from arithmetic to algebra in primary school education
225-248Views:198The main aim of this paper is to report a study that explores the thinking strategies and the most frequent errors of Hungarian grade 5-8 students in solving some problems involving arithmetical first-degree equations. The present study also aims at identifying the main arithmetical strategies attempted to solve a problem that can be solved algebraically. The analysis focuses on the shifts from arithmetic computations to algebraic thinking and procedures. Our second aim was to identify the main difficulties which students face when they have to deal with mathematical word problems. The errors made by students were categorized by stages in the problem solving process. The students' written works were analyzed seeking for patterns and regularities concerning both of the methods used by the students and the errors which occured in the problem solving process. In this paper, three prominent error types and their causes are discussed. -
Teaching sorting in ICT
101-117Views:163This article is aimed at considering how an algorithmic problem – more precisely a sorting problem – can be used in an informatics class in primary and secondary education to make students mobilize the largest possible amount of their intellectual skills in the problem solving process. We will be outlining a method which essentially forces students to utilize their mathematical knowledge besides algorithmization in order to provide an efficient solution. What is more, they are expected to use efficiently a tool that has so far not been associated with creative thinking. Sorting is meant to be just an example, through which our thoughts can easily be demonstrated, but – of course the method of education outlined can be linked to several other algorithmic problems, as well. -
Regula falsi in lower secondary school education
169-194Views:165The aim of this paper is to offer some possible ways of solving word problems in lower secondary school education. Many studies have shown that pupils in lower secondary school education (age 13-14) encounter difficulties with learning algebra. Therefore they mainly use arithmetical and numerical checking methods to solve word problems. By numerical checking methods we mean guess-and-check and trial-anderror. We will give a detailed presentation of the false position method. In our opinion this method is useful in the loweer secondary school educational processes, especially to reduce the great number of random trial-and-error problem solving attempts among the primary school pupils. We will also show the results of some problem solving activities among 19 grade 8 pupils at our school. We analysed their problem solving strategies and compared our findings with the results of other research works. -
The use of different representations in teaching algebra, 9 th grade (14-15 years old)
29-42Views:152Learning Algebra causes many difficulties for students. For most of them Algebra means rote memorizing and applying several rules without understanding them which is a great danger in teaching Algebra. Using only symbolic representations and neglecting the enactive and iconic ones is a great danger in teaching Algebra, too. The latter two have a primary importance for average students.
In our study, we report about an action research carried out in a grade 9 class in a secondary school in Hungary.The results show that the use of enactive and iconic representations in algebra teaching develops the students' applicable knowledge, their problem solving knowledge and their problem solving ability. -
The effects of chess education on mathematical problem solving performance
153-168Views:199We investigate the connection between the "queen of sciences" (mathematics) and the "royal game" (chess) with respect to the development of mathematical problem solving ability in primary school education (classes 1-8, age 7-15) where facultative chess education is present. The records of the 2014 year's entrance exam in mathematics – obligatory for the enrollment to secondary grammar schools in Hungary – are compared for the whole national database and for the results of a group containing chess-player students. The problems in the tests are classified with respect to the competencies needed to solve them. For the evaluation of the results we used standard mathematical statistical methods. -
Some Remarks on History of Mathematical Problem Solving
51-64Views:135In this contribution, it is our goal is to look on history of mathematics as a resource for a long-term study of mathematical problem solving processes and heuristics. In this way we intend to get additional information, e. g., about heuristics which proved to be extremely successful to create new mathematics. "Changing representation" and "false position" are examples of such strategies, which are illustrated by concrete examples to demonstrate the use for classroom teaching and teacher education. Our methods are based on hermeneutic principles. -
Teaching undergraduate mathematics - a problem solving course for first year
183-206Views:207In this paper we describe a problem solving course for first year undergraduate mathematics students who would be future school teachers.
Subject Classification: 97B50, 97B70, 97D50, 97D60, 97F60, 97U30
-
On an international training of mathematically talented students: assets of the 20 years of the “Nagy Károly Mathematical Student-meetings”
77-89Views:227The focus of this paper is to present the gems of the "Nagy Károly Mathematical Student-meetings" in Rév-Komárom (Slovakia) from 1991 to 2010. During these 20 years there was done a lot of work to train mathematically talented students with Hungarian mother tongue and to develop their mathematical thinking, and to teach them problem solving and heuristic strategies for successful acting on the competitions. We collected the most interesting problems and methods presented by the trainer teachers. -
Solution of an open reality based word-problem in two secondary schools
143-156Views:246This survey through an open reality based word problem is intended to assess - in two secondary schools in Komárom (Hungary) and in Komarno (Slovakia, Hungarian name: Révkomárom) in grade 10 - the ability of students to realize openness of a task. The comparison is justified by the fact that the language of teaching is Hungarian in both secondary schools, but with different curricula. This survey is related to the Content Pedagogy Research Program by the Hungarian Academy of Sciences. It is preceded by several surveys with a word problem (Pocket Money) of the third author and led by her between 2012 and 2015, and within that project in 2017 within a large sample test, among about 1500 students and university students in Hungary (?, ?) (?, ?). In our research we wanted first to assess how openly work students in two schools of the two cities mentioned in solving the same task. The answer to this question was similar to the large sample test results, so most of the students worked in a closed way, when solving this word problem. So we went on and tried to explore how students thought about their own solution given to this task, through mixed-type interviews.
Subject Classification: 97D70, 97F90, 97D50, 97M10
-
Teaching of old historical mathematics problems with ICT tools
13-24Views:193The aim of this study is to examine how teachers can use ICT (information and communications technology) tools and the method of blended learning to teach mathematical problem solving. The new Hungarian mathematics curriculum (NAT) emphasizes the role of history of science, therefore we chose a topic from the history of mathematics, from the geometry of triangles: Viviani's Theorem and its problem field. We carried out our teaching experiments at a secondary school with 14-year-old students. Students investigated open geometrical problems with the help of a dynamic geometric software (GeoGebra). Their research work was similar to the historical way. -
Würfel und Augensummen – ein unmögliches Paar
71-88Views:157It is well known that the values 2, 3, ..., 12 of the sum of eyes that appear when throwing two regular dice are not equally distributed. It can also be shown that no matter how the dice are falsified (or if only one of them is being manipulated) they can never reach the same probability concerning the sum of eyes ([8], 91 et seq.). This discovery can be generalized for n ≥ 2 dice. Various results of algebra and (real) calculus are used, so that a connection between two different mathematical fields can be realized. Such a connection is typical and often provides a large contribution for mathematics (because it frequently leads to a successful attempt of solving a special problem) and therefore examples of this sort should also be included in the mathematical education at schools as well as in the student teachers' university curriculum for the study of mathematics. -
Forming the concept of parameter with examples of problem solving
201-215Views:134Pupils are encountering difficulties with learning algebra. In order for them to understand algebraic concepts, particularly the concept of parameter it was decided by the teacher of mathematics and Information Technology to integrate the teaching of these two subjects. The aim of this study is to investigate whether, and to what degree, software can be useful in process of forming the concept of parameter. This longitudinal study was conducted in a junior high school (13-16 year old children) using different computer programs. -
Interdisciplinary Secondary-School Workshop: Physics and Statistics
179-194Views:152The paper describes a teaching unit of four hours with talented students aged 15-18. The workshop was designed as a problem-based sequence of tasks and was intended to deal with judging dice whether they are regular or loaded. We first introduced the students to the physics of free rotations of rigid bodies to develop the physics background of rolling dice. The highlight of this part was to recognise that cubes made from homogeneous material are the optimal form for six-sided objects leading to equal probabilities of the single faces. Experiments with all five regular bodies would lead to similar results; nevertheless, in our experiments we focused on regular cubes. This reinsures that the participants have their own experience with the context. Then, we studied rolling dice from the probabilistic point of view and – step-by-step – by extending tasks and simulations, we introduced the idea of the chi-squared test interactively with the students. The physics and the statistics part of the paper are largely independent and can be also be read separately. The success of the statistics part is best described by the fact that the students recognised that in some cases of loaded dice, it is easier to detect that property and in other cases one would need many data to make a decision with small error probabilities. A physical examination of the dice under inspection can lead to a quick and correct decision. Yet, such a physical check may fail for some reason. However, a statistical test will always lead to reasonable decision, but may require a large database. Furthermore, especially for smaller datasets, balancing the risk of different types of errors remains a key issue, which is a characteristic feature of statistical testing.
Subject Classification: F90, K90, M50, R30
-
Decomposition of triangles into isosceles triangles II: complete solution of the problem by using a computer
275-300Views:172We solve an open decomposition problem in elementary geometry using pure mathematics and a computer programme, utilizing a computer algebra system. -
Teaching puzzle-based learning: development of transferable skills
245-268Views:294While computer science and engineering students are trained to recognise familiar problems with known solutions, they may not be sufficiently prepared to address novel real-world problems. A successful computer science graduate does far more than just program and we must train our students to reach the required levels of analytical and computational thinking, rather than hoping that it will just 'develop'. As a step in this direction, we have created and experimented with a new first-year level course, Puzzle-based Learning (PBL), that is aimed at getting students to think about how to frame and solve unstructured problems. The pedagogical goal is increase students' mathematical awareness and general problem solving skills by employing puzzles, which are educational, engaging, and thought provoking. In this paper we continue sharing our experiences in teaching such a course. Whereas a brief discussion on our pedagogical objectives were covered in the first paper together with the material of the first of two lectures on pattern recognition, this follow-up paper presents the material of the second of two lectures, in which additional exercises are discussed to reinforce the lesson. Along the way we provide a glimpse of some foundational ideas of computer science such as incomputability and general system development strategies such as incremental and iterative reasoning. This paper discusses the outcomes of PBL courses, which include expected improvement in the overall results achieved by students who have undertaken PBL courses, compared to those students who have not. -
Comparing various functions of the divisors of an integer in different residue classes
247-258Views:155The main goal of this paper is to investigate some problems related to the distribution of the divisors of a number in different residue classes. We study these questions modulo 3, and use mostly just elementary number theory. In some special cases, we demonstrate how this problem is related to other fields of maths, especially to combinatorics. Since the author is also a secondary school teacher, we use elementary methods that can be discussed in secondary school, mainly within the framework of group study sessions or in special maths classes. We do think that the investigation of these types of questions can motivate children to find their own way to create their own questions, and to get a deeper insight into problem solving by these experimentations. -
The appearance of the characteristic features of the mathematical thinking in the thinking of a chess player
201-211Views:160It is more and more important in 21st century's education that not only facts and subject knowledge should be taught but also the ways and methods of thinking should be learnt by students. Thinking is a human specificity which is significant both in mathematics and chess. The exercises aimed at beginner chess players are appropriate to demonstrate to students the mathematical thinking of 12-14 year-old students.
Playing chess is an abstract activity. During the game we use abstract concepts (e.g. sacrifice, stalemate). When solving a chess problem we use logical quantifiers frequently (e.g. in the case of any move of white, black has a move that...). Among the endgames we find many examples (e.g. exceptional draw options) that state impossibility. Affirmation of existence is frequent in a mate position with many moves. We know there is a mate but the question in these cases is how it can be delivered.
We present the chess problem on beginners' level although these exercises appear in the game of advanced players and chess masters too, in a more complex form. We chose the mathematical tasks from arithmetic, number theory, geometry and the topic of equations. Students encounter these in classes, admission exams and student circles. Revealing the common features of mathematical and chess thinking shows how we can help the development of students' mathematical skills with the education of chess. -
The role of computer in the process of solving of mathematical problems (results of research)
67-80Views:136We would like to present results of an almost two years investigations about the role computer in the process of solving of mathematical problems. In these investigations took part 35 students of the secondary school (generalists) in the age 17–19 years. Each of these students solved following problem:
Find all values of the parameter m so that the function
f(x) = |mx + 1| − |2x − m| is:
a) bounded,
b) bounded only from the bottom,
c) bounded only from above,
first without a computer and next with a special computer program. We would like to show results of these researches. -
Integral part problems derived from a solution of an in mum problem
43-53Views:111In this paper, we solve the following two integral part problems:
Find all r ϵ R satisfying r^2 = [r]*([r]+1), resp. r^2≤[r]*([r]+1).
These problems have been mainly motivated by a solution of an infimum problem of Z. Boros and Á. Száz. -
Darstellungen und Vorstellungen und ihre Bedeutung für eine wirksame Metakognition beim Problemlösen und Begründen
195-220Views:140Metacognition has one of the highest effect sizes concerning successful learning. However metacognitive activities during task solving and problem solving are not directly obvious. But they can appear by writing someone's thoughts down. The following analysis, which focusses on the level of argumentation as well as on the way of derivation, shows that the quality of representation is an essential condition for the possibility of metacognition. -
A KöMaL problem in a new view
191-201Views:67The object of this paper is finding the general solution f : R^3 → R of the system of functional equations (1) valid for all x, y, z, t ϵ R. First f is expressed by a function of one variable which satisfies a system of two functional equations.This system is resolved by using an algebraic reformulation of the problem in terms of orbits and transversals. Finally the general solution of (1) is obtained. -
Force of summation
185-199Views:140Programming theorems are important tools of programming methodology. By using analogous programming techniques, the solutions of different tasks can be created easily and fast based on programming theorems. Perhaps the summation is the simplest programming theorem that is widely-known among the programmers but once and for all the most various tasks can be solved by this theorem. The aim of the present paper is to investigate the summation programming theorem. Several different abstract levels of this theorem will be defined and the problem types that can be solved based on summation are going to be described. We will underline those points of a programming theorem that make a theorem general and that are not defined in advance, just later during its application, when the solution of a problem is derived from the theorem.