Search

Published After
Published Before

Search Results

  • Regula falsi in lower secondary school education
    169-194
    Views:
    140
    The aim of this paper is to offer some possible ways of solving word problems in lower secondary school education. Many studies have shown that pupils in lower secondary school education (age 13-14) encounter difficulties with learning algebra. Therefore they mainly use arithmetical and numerical checking methods to solve word problems. By numerical checking methods we mean guess-and-check and trial-anderror. We will give a detailed presentation of the false position method. In our opinion this method is useful in the loweer secondary school educational processes, especially to reduce the great number of random trial-and-error problem solving attempts among the primary school pupils. We will also show the results of some problem solving activities among 19 grade 8 pupils at our school. We analysed their problem solving strategies and compared our findings with the results of other research works.
  • The use of different representations in teaching algebra, 9 th grade (14-15 years old)
    29-42
    Views:
    126
    Learning Algebra causes many difficulties for students. For most of them Algebra means rote memorizing and applying several rules without understanding them which is a great danger in teaching Algebra. Using only symbolic representations and neglecting the enactive and iconic ones is a great danger in teaching Algebra, too. The latter two have a primary importance for average students.
    In our study, we report about an action research carried out in a grade 9 class in a secondary school in Hungary.The results show that the use of enactive and iconic representations in algebra teaching develops the students' applicable knowledge, their problem solving knowledge and their problem solving ability.
  • The effects of chess education on mathematical problem solving performance
    153-168
    Views:
    169
    We investigate the connection between the "queen of sciences" (mathematics) and the "royal game" (chess) with respect to the development of mathematical problem solving ability in primary school education (classes 1-8, age 7-15) where facultative chess education is present. The records of the 2014 year's entrance exam in mathematics – obligatory for the enrollment to secondary grammar schools in Hungary – are compared for the whole national database and for the results of a group containing chess-player students. The problems in the tests are classified with respect to the competencies needed to solve them. For the evaluation of the results we used standard mathematical statistical methods.
  • Some Remarks on History of Mathematical Problem Solving
    51-64
    Views:
    111
    In this contribution, it is our goal is to look on history of mathematics as a resource for a long-term study of mathematical problem solving processes and heuristics. In this way we intend to get additional information, e. g., about heuristics which proved to be extremely successful to create new mathematics. "Changing representation" and "false position" are examples of such strategies, which are illustrated by concrete examples to demonstrate the use for classroom teaching and teacher education. Our methods are based on hermeneutic principles.
  • Teaching undergraduate mathematics - a problem solving course for first year
    183-206
    Views:
    179

    In this paper we describe a problem solving course for first year undergraduate mathematics students who would be future school teachers.

    Subject Classification: 97B50, 97B70, 97D50, 97D60, 97F60, 97U30

  • On an international training of mathematically talented students: assets of the 20 years of the “Nagy Károly Mathematical Student-meetings”
    77-89
    Views:
    196
    The focus of this paper is to present the gems of the "Nagy Károly Mathematical Student-meetings" in Rév-Komárom (Slovakia) from 1991 to 2010. During these 20 years there was done a lot of work to train mathematically talented students with Hungarian mother tongue and to develop their mathematical thinking, and to teach them problem solving and heuristic strategies for successful acting on the competitions. We collected the most interesting problems and methods presented by the trainer teachers.
  • Solution of an open reality based word-problem in two secondary schools
    143-156
    Views:
    230

    This survey through an open reality based word problem is intended to assess - in two secondary schools in Komárom (Hungary) and in Komarno (Slovakia, Hungarian name: Révkomárom) in grade 10 - the ability of students to realize openness of a task. The comparison is justified by the fact that the language of teaching is Hungarian in both secondary schools, but with different curricula. This survey is related to the Content Pedagogy Research Program by the Hungarian Academy of Sciences. It is preceded by several surveys with a word problem (Pocket Money) of the third author and led by her between 2012 and 2015, and within that project in 2017 within a large sample test, among about 1500 students and university students in Hungary (?, ?) (?, ?). In our research we wanted first to assess how openly work students in two schools of the two cities mentioned in solving the same task. The answer to this question was similar to the large sample test results, so most of the students worked in a closed way, when solving this word problem. So we went on and tried to explore how students thought about their own solution given to this task, through mixed-type interviews.

    Subject Classification: 97D70, 97F90, 97D50, 97M10

  • Teaching of old historical mathematics problems with ICT tools
    13-24
    Views:
    149
    The aim of this study is to examine how teachers can use ICT (information and communications technology) tools and the method of blended learning to teach mathematical problem solving. The new Hungarian mathematics curriculum (NAT) emphasizes the role of history of science, therefore we chose a topic from the history of mathematics, from the geometry of triangles: Viviani's Theorem and its problem field. We carried out our teaching experiments at a secondary school with 14-year-old students. Students investigated open geometrical problems with the help of a dynamic geometric software (GeoGebra). Their research work was similar to the historical way.
  • Nice tiling, nice geometry!?!
    269-280
    Views:
    100
    The squared papers in our booklets, or the squared (maybe black and white) pavements in the streets arise an amusing problem: How to deform the side segments of the square pattern, so that the side lines further remain equal (congruent) to each other? More precisely, we require that each congruent transformation of the new pattern, mapping any deformed side segment onto another one, leaves the whole (infinitely extended) pattern invariant (unchanged).
    It turns out that there are exactly 14 types of such edge-transitive (or so-called isotoxal) quadrangle tilings, sometimes with two different forms (e.g. black and white) of quadrangles (see Figure 2). Such a collection of tiling can be very nice, perhaps also useful for decorative pavements in streets, in flats, etc.
    I shall sketch the solution of the problem that leads to fine (and important) mathematical concepts (as barycentric triangulation of a polygonal tiling, adjacency operations, adjacency matrix, symmetry group of a tiling, D-symbol, etc). All these can be discussed in an enjoyable way, e.g. in a special mathematical circle of a secondary school, or in more elementary form as visually attractive figures in a primary school as well.
    My colleague, István Prok [11] developed an attractive computer program on the Euclidean plane crystallographic groups with a nice interactive play (for free download), see our Figures 3-5.
    A complete classification of such Euclidean plane tilings (not only with quadrangles) can be interesting for university students as well, hopefully also for the Reader (Audience). This is why I shall give some references, where you find also other ones.
    Further problems indicate the efficiency of this theory now. All these demonstrate the usual procedure of mathematics and the (teaching) methodology as well: We start with a concrete problem, then extend it further, step-by-step by creating new manipulations, concepts and methods. So we get a theory at certain abstraction level. Then newer problems arise, etc.
    This paper is an extended version of the presentation and the conference paper [7]. The author thanks the Organizers, especially their head Professor Margita Pavlekovic for the invitation, support and for the kind atmosphere of the conference.
  • Supporting the theory of math didactic using knowledge-measuring questions and analysis of the solutions
    1-16
    Views:
    137
    New or rediscovered results presented in this paper are the results of the analysis of the problem sets used in the two-tier system secondary school final examination in mathematics, a system that was introduced in Hungary in 2005.
    Many of the revealed problem arise in connection with misunderstanding the text of the problems. Causes of misinterpretation can be either that the text is lacking some important information, or that it should be interpreted not in word-to-word manner.
    Theses and their argumentations presented here refer partly on the new types of problems (tests, non-standard mathematical contents), and partly on improvement of learning-teaching process in topics of equations and approximations.
  • Pólya’s influence on (my) research
    161-171
    Views:
    218

    In this article, I outline the influence of George Pólya's work on research in different areas and especially on mathematics education, namely heuristics and models of the problem-solving process. On a more personal note, I will go into some details regarding Pólya's influence on my own work in mathematical problem solving with a focus on the research project for my PhD thesis.

    Subject Classification: 97xxx

  • The Frobenius exchange problem on competitions and in classroom
    203-218
    Views:
    37
    Let a_1, ..., a_n be relatively prime positive integers. The still unsolved Frobenius problem asks for the largest integer which cannot be represented as Σ x_i a_i with non-negative integers xi, and also for the number of non-representable positive integers. These and several related questions have been investigated by many prominent mathematicians, including Paul Erdős, and a wide range of partial results were obtained by various interesting methods differing both in character and difficulty. In this paper we give a self-contained introduction to this field through problems and comments suitable also for treatment in a class of talented students.
  • Simple Variations on The Tower of Hanoi: A Study of Recurrences and Proofs by Induction
    131-158
    Views:
    285

    The Tower of Hanoi problem was formulated in 1883 by mathematician Edouard Lucas. For over a century, this problem has become familiar to many of us in disciplines such as computer programming, algorithms, and discrete mathematics. Several variations to Lucas' original problem exist today, and interestingly some remain unsolved and continue to ignite research questions. Nevertheless, simple variations can still lead to interesting recurrences, which in turn are associated with exemplary proofs by induction. We explore this richness of the Tower of Hanoi beyond its classical setting to compliment the study of recurrences and proofs by induction, and clarify their pitfalls. Both topics are essential components of any typical introduction to algorithms or discrete mathematics.

    Subject Classification: A20, C30, D40, D50, E50, M10, N70, P20, Q30, R20

  • Integral part problems derived from a solution of an in mum problem
    43-53
    Views:
    89
    In this paper, we solve the following two integral part problems:
    Find all r ϵ R satisfying r^2 = [r]*([r]+1), resp. r^2≤[r]*([r]+1).
    These problems have been mainly motivated by a solution of an infimum problem of Z. Boros and Á. Száz.
  • Darstellungen und Vorstellungen und ihre Bedeutung für eine wirksame Metakognition beim Problemlösen und Begründen
    195-220
    Views:
    117
    Metacognition has one of the highest effect sizes concerning successful learning. However metacognitive activities during task solving and problem solving are not directly obvious. But they can appear by writing someone's thoughts down. The following analysis, which focusses on the level of argumentation as well as on the way of derivation, shows that the quality of representation is an essential condition for the possibility of metacognition.
  • A KöMaL problem in a new view
    191-201
    Views:
    46
    The object of this paper is finding the general solution f : R^3 → R of the system of functional equations (1) valid for all x, y, z, t ϵ R. First f is expressed by a function of one variable which satisfies a system of two functional equations.This system is resolved by using an algebraic reformulation of the problem in terms of orbits and transversals. Finally the general solution of (1) is obtained.
  • Force of summation
    185-199
    Views:
    109
    Programming theorems are important tools of programming methodology. By using analogous programming techniques, the solutions of different tasks can be created easily and fast based on programming theorems. Perhaps the summation is the simplest programming theorem that is widely-known among the programmers but once and for all the most various tasks can be solved by this theorem. The aim of the present paper is to investigate the summation programming theorem. Several different abstract levels of this theorem will be defined and the problem types that can be solved based on summation are going to be described. We will underline those points of a programming theorem that make a theorem general and that are not defined in advance, just later during its application, when the solution of a problem is derived from the theorem.
  • Decomposition of triangles into isosceles triangles I: let the students ask bravely
    163-184
    Views:
    111
    We report about working up an open geometric problem as a mathematical research with pupils of a mathematics camp. This paper shows the didactic aims and the methods we worked with, the didactic results. The second part of this paper gives a general solution of the problem, using pure mathematics and a computer programme.
  • Teaching puzzle-based learning: development of basic concepts
    183-204
    Views:
    301
    While computer science and engineering students are trained to recognise familiar problems with known solutions, they may not be sufficiently prepared to address novel real-world problems. A successful computer science graduate does far more than just program and we must train our students to reach the required levels of analytical and computational thinking, rather than hoping that it will just 'develop'. As a step in this direction, we have created and experimented with a new first-year level course, Puzzle-based Learning (PBL), that is aimed at getting students to think about how to frame and solve unstructured problems. The pedagogical goal is increase students' mathematical awareness and general problem solving skills by employing puzzles, which are educational, engaging, and thought provoking. We share our experiences in teaching such a course – apart from a brief discussion on our pedagogical objectives, we concentrate on discussing the presented material which covers (in two lectures) just one selected topic (pattern recognition). In this paper we present the ideas behind foundations for PBL and the material of the first of two lectures on pattern recognition, in which we address core concepts and provide students with sufficient exemplars to illustrate the main points.
  • Why do we complicate the solution of the problem? reflection of Finnish students and teachers on a mathematical summer camp
    405-415
    Views:
    147
    This paper deals with reactions and reflections of Finnish secondary school students and teachers on Hungarian mathematics teaching culture. The experiences were collected at a mathematics summer camp in Hungary.
  • Integrating elements of data science into high-school teaching: Naïve Bayes-classification algorithm and programming in Python
    307-316
    Views:
    213

    Probability theory and mathematical statistics are traditionally one of the most difficult chapters of mathematics to teach. One of the authors, Péter Princz has experience in teaching various topics via computer programming of the problem at hand as a class activity. The proposed method is to involve programming as a didactic tool in hard-to-teach topics. The intended goal in this case is to implement a naïve Bayes-classifier algorithm in Python and demonstrate the machine-learning capabilities of it by applying it to a real-world dataset of edible or poisonous mushrooms. The students would implement the algorithm in a playful and interactive way. The proposed incremental development process aligns well with the spirit of Tamás Varga who considered computers as modern tools of experimental problem solving as early as in the 1960s.

    Subject Classification: 97D40, 97D50, 97K50, 97K99, 97M60, 97P40, 97P50, 97U50

  • Challenges that a teacher-researcher faces during an action research – a case study
    89-99
    Views:
    166

    This paper explores the dual role of the teacher-researcher in a four-year action research project focused on problem-based learning in mathematics. It highlights the challenges faced during the phases of planning, implementation, analysis, and reflection. Drawing on insights from the author’s experiences and observations based on both qualitative and quantitative data collection methods, the study identifies distinct challenges linked to the dual role, like differing design goals or subjective-objective voices. The author also proposes solutions to the identified challenges, such as collaboration with university experts and using reflective practices. Furthermore, the research underscores the beneficial impact of action research on enhancing teachers’ awareness and bridging the theory-practice gap, calling for further studies in this area.

    Subject Classification: 97D99

  • Die aus der Studienzeit stammenden Aufzeichnungen des Johann Bolyai über die Würfelverdoppelung
    307-316
    Views:
    86
    Hereinafter we are going to show that Bolyai Janos was preoccupied by the problem of the Duplication of the Cube, which was unknown until now by the rich Bolyai-literature.
    This problem was solved using the Parabola, the Hyperbola and the Cissoide already in the ancient times. The Cissoide was created by Diocles especially for the constuction of the Duplication of the Cube without Compass and Straightedge. The hereinafter "deciphered" document of Bolyai was written during his university studies. In his study he presents the solutions discovered by then and tries to give a new one. We transcribed his notations to the present-day use and complemented it where it was necessary.
    The mathematics historically background and the explication is very detailed described by Van derWaerden in Erwachende Wissenschaft [7], which is to find on English, German and Hungarian, too. That's because we dispense with this [8].
  • The far side of recursion
    57-71
    Views:
    107
    Recursion is somewhat of an enigma, and examples used to illustrate the idea of recursion often emphasize three algorithms: Towers of Hanoi, Factorial, and Fibonacci, often sacrificing the exploration of recursive behavior for the notion that a "function calls itself". Very little effort is spent on more interesting recursive algorithms. This paper looks at how three lesser known algorithms of recursion can be used in teaching behavioral aspects of recursion: The Josephus Problem, the Hailstone Sequence and Ackermann's Function.
  • Solving word problems - a crucial step in lower secondary school education
    47-68
    Views:
    240

    Algebra is considered one of the most important parts of Mathematics teaching and learning, because it lays the foundations of abstract thinking as well as reasoning abilities among the lower secondary school pupils who have just transited from the world of numbers and computations to the area of equalities, signs, symbols and letters. The present article focuses on the fact that how the transition from arithmetic to algebra can be made more smooth. We have concentrated our experiments towards the approach of algebraic reasoning and its utilities in filling the gap between arithmetic and beginning algebra in lower secondary school education.We also underline the importance of another approach in overcoming the challenges in the transition from arithmetic to algebra, to enhance and make algebraic learning more effective, with special considerations to word problem-solving processes. In our opinion, we have to go through three phases in the introducing of algebra in Grade 7 Mathematics education: Regula Falsi method (based only on numerical calculations); functional approach to algebra (which combines the numerical computation with letter-symbolic manipulation); and writing equations to word problems. The conclusions of the present article would be helpful to Mathematics teachers for applying themselves to develop the pupils’ interest in word problem-solving processes during algebra teaching classroom activities.

    Subject Classification: 97B10, 97C30, 97C50, 97D10, 97D40

Database Logos

Keywords