Search

Published After
Published Before

Search Results

  • Effect of Ferilizer on the Yield of Maize (Zea mays L.)
    40-46
    Views:
    125

    The effect of fertilization on the yield of maize was examined on chernoem soil with lime deposits at the experimental station at Látókép of the Center for Agricultural Sciences, University of Debrecen. The yields of maize were evaluated using quadratic regression function, in three years – between 2000 and 2002 – in non-irrigated and irrigated treatments. After calculating the regression equations, by derivation of the functions, we have determined the amount of fertilizers needed for maximum yield.
    In the non-irrigated treatments, maximum yield and the active substance amount of fertilizer was as it follows: in 2000, yield of 9,133 t/ha with the application of 384 kg/ha mixed active substance, while in 2002 a yield of 6,289 t/ha with the application 236 kg/ha NPK active substance was achieved. In 2001, due to the favourable precipitation, a yield of 9,864 t/ha was achieved with the application of 245 kg/ha fertilizer. In the case of maximum yield, compared to the unfertilized control, the yield increase was 2,5-5 t/ha. The average increase for 1 kg of NPK fertilizer was 13-19 kg.
    We also determined the necessary fertilizer dosage for maximum yield in irrigated treatments. In 2000, 10,003 t/ha with a dosage of 423 kg/ha, in 2001, 11,542 t/ha with a dosage of 277 kg/ha and in 2002, 8,596 t/ha of maximum yield could be achieved with a fertilizer treatment of 277 kg/ha in the examined three years. The yield increase, in irrigated treatments, varied between 3,9-5,9 t/ha so it was greater than in the case of non-irrigated experimetal plots. The yield increase for 1 kg fertilizer varied between 12-21 kg.

  • The impact of different fertilization methods on some microbiological soil characteristics
    119-126
    Views:
    100

    In our experiment, we studied the impact of an organic fertilizer, Bactofil® A10 (half- and full dosage applied in field practice) and an artificial fertilizer of Ca(NO3)2 content in different dosages (20-40 mg kg-1) – in addition to control treatments – on two different soils (calcareous chernozem, humus sandy soil) in 2005-2006, the experiment was complemented with treatments applying 250% dosage (100 mg kg-1 N, Bactofil® A10 2.5 times the field dosage) and a compost from urban sewage (25 g kg-1 compost) was also tested on these two soil types. In the
    experiment, several soil microbial parameters were studied. The experiment was set up at the Department of Agrochemistry and Soil Science using 1-kg pots.
    Our laboratory experiments were performed at the soil microbiology laboratory of UD CAS Department of Agrochemistry and Soil Science, the total number of bacteria, microscopic fungi, nitrifying and aerob cellulose-decomposing bacteria were determined together with the CO2-production of soil, N content of the biomass and urease enzyme activity.
    Statistical analysis of the data was done using the program SPSS 13.0, means of the measurements, deviation and significance values were calculated. 
    In 2005-2006, the effect of the different dosages of Bactofil® A10, and the Ca(NO3)2 fertilizer on the examined microbial parameters of calcareous chernozem and humus sandy soils can be summarized as follows:
    • Concerning the total number of bacteria, both treatments were effective on calcareous chernozem soil, the higher (significant) increment in bacteria number was observed in the artificial fertilizer treatments, while in the humus sandy soil Bactofil treatments had a beneficial effect. The number of microscopic fungi also increased in both treatments, higher numbers were observed in the average of two years in the Bactofil treatments.
    • The number of nitrifying bacteria was 2.5 times higher in both high-dosage treatments on calcareous chernozem soil, while on humus sandy soil a slight (not significant) increment was observed only int he high-dosage Bactofil treatment. The amount of aerob cellulose-decomposing bacteria significantly increased on calcareous chernozem soil in both the highdosage artificial fertilizer and the small-dosage Bactofil treatment, however, on humus sandy soil no significant increase was observed in either treatment.
    • The CO2-production increased in both soil types, although it was not significant in either treatment. A higher (though not significant) soil respiration was observed in the Bactofil treatments in both soil types.
    • The microbial biomass N values were significantly higher in the high-dosage Bactofil treatments, however, the high-dosage artificial fertilizer treatment also increased these values significantly on calcareous chernozem soil.
    • On calcareous chernozem soil, urease activity was significantly increased and reduced by high-dosage artificial fertilizer treatments and Bactofil treatments, respectively. On humus sandy soil, urease activity was also reduced except for the high-dosage artificial fertilizer treatment. In 2007, the pot experiment with 250% dosages was complemented with the application of compost rich in organic matter, the results of these treatments are sumnmarized as follows:
    • In the case of the total number of bacteria, all three treatments resulted in a significant increase on calcareous chernozem soil with the highest values in the Bactofil treatment. The Bactofil treatment was the most effective on the humus sandy soil, but the artificial fertilizer treatment also
    resulted in a significant increment. In the case of the total number of fungi, Bactofil treatments resulted in the highest values on both soils, but the compost treatment also increased the number of fungi in calcareous chernozem significantly. 
    • The number of nitrifying bacteria was increased most (significantly) by the Bactofil and compost treatments on both soil types. The amount of cellulose-decomposing bacteria was significantly increased by he compost treatment on calcareous chernozem soil, while its effect was not significant on humus sandy soil. The number of these bacteria was increased significantly by the Bactofil treatment on humus sandy soil.
    • On calcareous chernozem soil, all three treatments significantly increased CO2-production, while the compost treatments had the resulted in the largest increment in soil respiration on both soil types.
    • The soil biomass N content was significantly increased in both soils by the compost treatment, while in the case of the humus sandy soil, the Bactofil treatment also resulted in a significant increment.
    • Urease enzyme activity was significantly increased by the artificial fertilizer treatment on both soils. In calcareous chernozem soil, the Bactofil treatment resulted in a slight (not significant) reduction in enzyme activity. In humus sandy soil, the Bactoful treatment also resulted in a slight reduction, while the compost treatment increased (though not significantly) the urease activity.
    Based on our results, it can be stated that all three treatments were effective with respect to the studied soil microbial parameters. For both the calcareous chernozem and the humus sandy soil, the organic fertilizer Bactofil and the compost with high organic matter content had a stronger effect on some soil microbial parameters than the artificial fertilizer.

  • Study of some physiologic properties of different genotype sweet corn hybrids
    105-110
    Views:
    99

    The effect of nutrient-supply (control, N120+PK) and two different genotypes on the physiologic properties of sweet corn has been investigated in the crop-year of 2011 on chernozem soil in the Hajdúság region. The experiments were carried out at the Experimental Station of the University of Debrecen in Debrecen-Látókép. The experiment was sewn in two different sowing times: the 21st April can be considered as an early, while the 19th May as a late sowing time. The two involved hybrids were Jumbo and Enterprise. The applied plant density was 65 000 plants per hectare.
    Our aim with this experiment was to study the plant production, just as the main affecting factors of its development and dynamics, like nutrient-supply and genotypes. We aimed to study and analyse the relationships between these factors and plant production. In this study following parameters were measured and calculated: photosynthetic activity, chlorophyll-content (SPAD-value), leaf area index (LAI) and leaf area duration (LAD). Regarding the analysis of photosynthetic activity values no obvious relationship between the measured values and the applied hybrids, just as nutrient-supply has been revealed. 
    Analysing the SPAD-values it can be stated that the chlorophyll-content of the measured leaves showed an increasing tendency due to the nutrient-supply. The highest values have been measured in the intensive cob development phase of the early sowing time plots.
    Regarding the LAI-values we have found significant differences between the fertilizer treatments in both sowing time treatments. In case of the leaf area duration values – that is derived from the LAI values – nutrient-supply has positively affected the duration of the assimilation area.

  • Grain yield and quality of maize hybrids in different FAO maturity groups
    126-131
    Views:
    68

    An improvement in the quality of maize grain by increasing the level of components responsible for its biological value is possible
    by using genetic means. However, a change in the genotype, together with improving the nutrient properties of the grain, also has some
    adverse consequences connected with a fall in yield and in resistance to diseases.
    Field experiments were conducted during three years (2003, 2004and 2005) to evaluate environmental effects on grain yield and
    quality responses of maize hybrids. Twenty one hybrids of various maturity groups (FAO 150-400) were planted to achieve an optimum
    (60-70 000 plants per hectare) plant populations and grown under the medium-N (80 kg N ha-1) fertilization. Environmental conditions
    significantly affected maize hybrid responses for grain yield, starch, oil and protein contents, and consequently, starch, oil and protein
    yields per hectare. Hybrids of flint type, which have a short vegetation period, had high protein and oil content but the yield averages
    were low due to the slower rate of starch incorporation. Hybrids of the dent type have a longer growing season and more intense
    carbohydrate accumulation, but low protein and oil contents. In wet years there was a higher rate of starch accumulation, while dry
    years are favorable for protein and oil accumulation. Positive correlation existed between starch content and grain yield and 1000-
    weight as well as between oil content and volumetric weight among tested hybrids. Negatively correlation existed between grain oil and
    starch content as well as between oil content and grain yield and 1000-weight. Thus, end-users that require high quality maize may need
    to provide incentives to growers to off set the negative correlation of grain yield with oil and protein content.

  • The Effect of Sowing Time and Nutrient Supply on the Yield Stability of Maize
    75-80
    Views:
    126

    Sowing time, nutrient supply and plant number play crucial roles in the yield stability of maize. The productivity of various hybrids, each with its own genetic characteristics, was tested for three different sowing times and five different fertilizer doses. The highest yields were achieved at the third sowing time (17. V.), which is unusual, because the second half of the summer was rainy and was favourable for late sowing. The seed moisture content at harvest was higher than the optimal 14-15% at the third sowing time, the hybrids, which have intensive bleeding dynamics, couldn’t reach the lower seed moisture content at harvest of the early sowing. In that case we have to decision whether the plus yield of the third sowing time cover the drying costs.
    Some hybrids produced the highest yields by N 120, P2O5 75, K2O 90 kg/ha active agent but the higher fertilizer doses depress the yield. The other part of the hybrids were able to produce high yield by bigger fertilizer doses. On the whole the agro-ecological optimum of the NPK fertilization was N 120-160, P 25-100, K 90-120 kg/ha active agent, but the N 80, P2O5 50, K2O 60 kg/ha fertilizer doses was the most effective.

  • 15N-Tracertechnik in der Pflanzenbauforschung
    3-9
    Views:
    70

    Issues of nitrogen are still of particular importance in crop sciences. 15N-tracer are used to identify the N dynamics in soils and the N transfer between soil and plant. This tool is also helpful in clarifying fertilization problems.
    This article points out the special requirements for the application of stable 15N-isotops in agri-chemical research. Designs and results of selected laboratory experiments, examples of one-year field experiments, and a 15N long-term trial are represented in detail. The given literature refers to detailed results of diverse 15N publications in the system soil – fertilizer – (animal) – crop.

  • Comparative analysis of soil analysing datas on different sempling-plots
    85-90
    Views:
    69

    Hibrid maize is cultivated on larger plots, therefore the sown areas of hibrid maize are heterogeneous from a pedology aspect. Heterogenity causes problems during tasseling, chemical plant protection and harvest. The heterogenity of sown areas can be compensated by fertilization which is based on soil analysis. We carried out research into change of the soil on four soil types from 1987 to 2005.
    There were no significant changes in pH, hydroiodic acidity, CaCO3-content, humus-content on meadow chernozem soil. We detected equalization of salin content in the examined soil layers. There were no significant changes in the measured values on chernozem meadow soil and solonetz meadow soil in 2005. We discoverd equalization of saline content on chernozem meadow soil, but the changes were not as obvious as the changes on meadow chernozem soil. We found salinization in the 30-60 cm soil layer on type meadow soil that may be due to water movement.

  • Role of some agrotechnical elements in the precision crop technology of cereals
    241-244
    Views:
    124

    The crop models and precision technology have an important role in the development of winter wheat and maize agrotechnics, which crops have determinative role in Hungarian crop production. The effects of agrotechnical elements (crop rotation, fertilization, irrigation, crop protection, plant density) were studied in our longterm experiments on chernozem soil. Our scientific results proved that the high yields, and good yield stability were obtained in the input-intensive crop models. Maize had lower ecological adaptive capacity than winter wheat. The optimatization of agrotechnical elements reduces the harmful climatic effects so we can increase the yield and yield stability of cereals agro-ecosystems. The yields of wheat varied between 2 and 7 t ha-1 in extensive and 8 and 10 t ha-1 in intensive crop models and the yields of maize ranged between 2 and 11 t ha-1 and 10 and 15 t ha-1, respectively.

  • The relationship between the nutrient supply and the yield of maize hybrids with different genetic traits on chernozem soil in variant years
    27-31
    Views:
    195

    The experiments were set on lime-coated chernozem soil in 2013 and in 2014, in our study four hybrids were included with different FAO number. We studied the effect of NPK fertilization and row spacing on the yield. The fertilizer doses were based on a 25-year longterm experiment. Compared to control, the N40 +PK treatment has also achieved a significant yield increase, although some hybrids responsed with yield loss to the increasing fertilizer doses; this effect was observed especially in 2014. The majority of hybrids reached higher yields in both years using the 50 cm row spacing. The water release of hybrids was measured weekly during the maturation, at the same time points. The rainy September slowed ripening and the water release of the hybrids in 2013, so the grain wet content at harvest showed higher values. The moisture contents were increased for some hybrids, in spite of the positive and favorable dynamic of water loss.

  • The irrigation influence under the soil, microclimate and plants in maize from Crişurilor Plain
    180-186
    Views:
    94

    The paper is based on the researches carried out in the long term trial placed on the preluvosoil from Oradea in 1976, for establishing
    the soil water balance. In the irrigated variant the soil moisture was determined 10 to 10 days for maintaining the soil water reserve on
    irrigation depth (0 – 50 cm for wheat and bean, 0 – 75cm for maize, sunflower, soybean, sugarbeet, potato and alfalfa 1st year and 0 – 100
    cm for alfalfa 2nd year) between easily available water content and field capacity. Thus, an average irrigation rate of 2560 m³/ha was used
    in the 9 experimental crops. The average of the annual rainfall for the 1976 – 2008 period was of 625.0 mm. The technologies used were
    correlated with the needes of the crops, such as melioration crop rotation, chemical fertilizers in accordance with the chemical export on the
    yield, manure (40 t/ha) was used in potato and sugarbeet. After 33 years of the irrigation use the soil structure degree (38.62%) did not
    decrease when compared to the unirrigated maize – wheat crop rotation (37.01%). Bulk density, total porosity, penetration resistance and
    hydraulic conductivity have worse values than the ones in the unirrigated variant. The humus content is very close to the humus content
    determined in 1976, the phosphorus and the potassium content increased very much in comparison with the initial content (117 ppm vs 22.0
    ppm); (180.0 ppm vs 102 ppm). The use of the adequate fertilization system and of the irrigation water with a good qaulity did not determine
    a decrease of the pH value of the soil. The irrigation determined the improve of the microclimate conditions, the increase of the plant water
    consumption, yield gains very significant statistically and higher protein content of the maize grains.

  • Comparative study of a winter wheat variety and hybrid sown after different pre-crops on chernozem soil
    63-69
    Views:
    228

    Wheat production is a determining branch within Hungarian crop production (produced on nearly one million hectares). Weather anomalies caused by climatic change confirmed the importance of the biological background (variety, hybrid) in wheat production. The adapting ability and reaction of different wheat genotypes towards nutrient supply were studied in a long-term field experiment on chernozem soil type in the case of different pre-crops (sunflower and maize). According to the experimental results of the vegetation of 2017/2018, the yield of the variety Ingenio sown after the sunflower as previous crop ranged between 4168 and 8734 kg ha-1, while in the case of maize as previous crop, this value ranged between 2084 and 7782kg ha-1, depending on the applied nutrient supply level. The studied genotypes produced rather significant yield surplus as a response to the application of mineral fertilization (4.6–5.1 t ha-1 after sunflower and 5.7–6.3 t ha-1 after maize). Optimal mineral fertilizer dosage was determined by both the genotype and the pre-crop. N-optimum values of wheat genotypes was determined using regression analysis. In the case of the variety Ingenio sown after sunflower, the optimum range was N144-150+PK, while after maize, it was
    N123-150+PK, respectively. For the hybrid Hyland, these optimum ranges were N114-120+PK, just as N150-153+PK, resp. The application of optimal mineral fertilizer dosages improved water utilization of the studied wheat genotypes to a significant extent. WUE values of the control, unfertilized treatments ranged between 4.1–8.3 kg mm-1, while in optimal fertilizer treatment, it ranged between 15.5 and 17.4 kg mm-1.

  • The effect of irrigation on the yield and quality of maize (Zea mays L.) hybrids
    143-147
    Views:
    168

    In this study, the effect of water supply on the quality and productivity of different maize hybrids was observed.

    Maize production is influenced by many agro-technical factors such as nutrient supply, plant density, environmental factors, water supply and temperature. Good soil quality and adequate technology significantly reduce the unfavourable effect of crop year. The impact of fertilization, crop rotation, irrigation and plant density on maize yield was greatly affected by crop year and crop rotation. The main constituent (69–75% dry matter concentration) of maize seed is starch, however, its increase can be achieved only to a limited extent, as increasing the starch content will reduce other parameters, especially protein content. Significant nutrient content improvements can be achieved by appropriate hybrid-site connection and the use of adequate technology. Protein content reduction with optimal water supply can be positively influenced by the appropriate nutrient supply for the hybrid.

    The experiments were carried out at the Látókép Experimental Site of Crop Production on calcareous chernozem soil. The weather of the examined year, which was partly favorable for maize and partly unfavourable in other respects, was also reflected in the development of maize and yields achieved.

    In 2019, we were examining the hybrids of Kamaria (FAO 370), P 9903 (FAO 390), DKC 4351 (FAO 370) and KWS Kamparis (FAO 350–400). Due to the dry soil condition, sowing was delayed, however, the hybrids emerged ideally because rain arrived soon after sowing, which facilitated initial development. Young plants evolved rapidly and dynamically in the case of all hybrids. In terms of heat-demanding bread, the month of May was unfavourable to temperatures below the annual average, but the higher amount rainfall helped the development. However, due to the drier period in early July, 25–25 mm of irrigation water was applied to half of the experimental areas on July 1 and 15.

    The aim of our research was to determine the best population density for hybrids under favourable soil conditions (calcareous chernozem soil). In both irrigated and dry conditions, a crop density of 75,000 crops were the most favourable for the Kamaria hybrid. The P9903 hybrid in the case of a crop density of 85 crops proved to be ideal and the DKC4351 had an optimal population density of 95,000.

    However, it should be taken into consideration that, in the case of soils with poor water management, the drought sensitivity of the crop stand may increase at a population density of 95,000.

    As a result of irrigation, yield increased and the difference between the examined plant numbers decreased. The yield growth was relatively moderate (341 kg ha-1 – 1053 kg ha-1), which makes the economicalness of irrigation doubtful in the given year.

  • The imact of crop rotation and fertilisation on the SPAD values of winter wheat on chernozem soil in a long-term experiment
    123-126
    Views:
    130

    We have carried out our outdoor field experiments at the Látókép Experimental Farm of the CAS of the University of Debrecen in the cropyear of 2012/2013 on chernozem soil in a long-term experiment. We have studied the effects of two different preceding crops (sweet corn, sunflower) on the development of the SPAD values of wheat varieties of different genotypes in the cases of control, N60+PK and N120+PK fertilizer treatments. According to our research results, we have concluded that the preceding crop, the fertilizer application and the variety selection influenced the SPAD values. According to our data, we have measured higher SPAD values after sweet corn preceding crop, the standard deviations were in a smaller range in the case of the studied varieties. After sunflower preceding crop, smaller averages were experienced with wider standard deviation range. In the case of favourable preceding crop, the differences between the varieties are more pronounced than in the case of unfavourable preceding crop. The maximal SPAD values were measured in milky ripening in the case of N120+PK fertilizer treatment.

  • Effects of fermented and supplemented chicken manure on the nutrient management aspects of an apple orchard
    117-123
    Views:
    113

    AIt is a huge challenge for farmers worldwide to successfully increase the organic matter content of their soils and improve their water balance at the same time. Therefore, the main aim of the study is to develop and test organic-based nutrient composite materials that can be successfully used by farmers to increase soil organic matter content, improve water management parameters and implement water-efficient technologies. The study was performed in the orchard of the Institute of Horticultural Science of the University of Debrecen in Hungary (Debrecen-Pallag). The experiment was set up in a ten-year-old apple (Malus domestica ‘Pinova’) orchard. In the trial, fermented poultry manure and superabsorbent polymers (SAP) were used at different doses to study their effects on soil properties and fruit quality. Applied composite materials increased the nitrate and organic nitrogen content of the soil. Treatments did not affect the sugar content of the fruits but significantly and positively affected the individual fruit weight and the titratable acidity of the fruits.

  • Examination of the effects of the cropyear and the nutrient supply on the quality of winter wheat with the help of Győri’s Z-index
    121-125
    Views:
    63

    In the case of winter wheat,the knowledge of several quality features is needed to be able to determine precisely the real quality of the given
    wheat. Several systems have been worked out on the qualification of the winter wheat in Hungary and other countries as well. Evaluating the
    quality is being made more difficult because the different quality features take part in the development of the quality in different degrees and
    the values of the several quality features are in different intervals and these data are different dimension values. On the evidence of the
    results, in the case of considering several features,it can be difficult to rank into one concrete quality cathegory. Researchers are trying to
    develop complex quality index numbers in order to be able to define the quality more precisely. One of these complex quality index numbers
    is Gyıri’s, so called, Z-index.
    In three years from 2006 and 2008, we examined the change of the quality features of nine varieties of winter wheat with the help of the
    Z-index under the influence of the effects of the different cropyears and the fertilizer treatment. The results show that the Z-index of the
    examined varieties of winter wheat were influenced by several factors. Examining the data of the three different breeding years together we
    can observe the corrective effect of the different cropyears on the Z-index, and if we examine the three years separately and together, the
    differences of the quality features of the different varieties differentiate very well, and with the help of the Z-index the comparison of the
    types is easier and perspicuous, and the Z-index represents the different nutrient reactions of the different types as well. On the average of
    the three years, the types gave the best results at N120-150+PK nutrient level. Among the nine varieties the best results were given by Mv Suba,
    GK Békés and Mv Mazurka in the case of both low and higher nutrient levels.

  • The effects of agrotechnological factors on winter wheat yield in humid cropyear
    162-167
    Views:
    90

    The effects of crop rotation, nutrien supply and crop protection technologies, as well as the appearance of the main ear- and leafdiseases
    (powdery mildew, helminthosporium leaf spot, leaf rust, fusarium) were studied on the crop yields of winter wheat variety MV
    Pálma during the 2009/2010 crop year. The experiments were conducted in triculture (pea – wheat – corn) and biculture (wheat – corn), at
    five nutrition levels, with the use of three crop protection technologies (extensive, conventional and intensive) at the Látókép Research Site of
    the University of Debrecen, Centre of Agricultural Sciences. Our results proved that the appearance of leaf- and ear-diseases were
    significant in the wheat cultures during the 2009/2010 crop year, because of the rainy, warmer than usual weather, the lodging, and the huge
    vegetative mass developed. The most severe infections by the four examined diseases after pea and corn pre-crops were observed at
    extensive crop protection levels, when fertilizers were used at the highest dose.
    Following corn pre-crop, in the case of all the three crop protection technologies the maximum rate of wheat yield results were achieved
    at N150+PK level. The highest yield was reached at intensive crop protection level (6079 kg ha-1). In triculture, in case of all the three crop
    protection technologies the maximum yields were achieved at N50+PK level; in extensive technology 5041 kg·ha-1 yield, in conventional
    technology 6190 kg ha-1 yield was realised, while in the intensive technological model the yield was 7228 kg ha-1.
    The relationship between yield and fertilizer amounts, the rate of pathogen contaminations, crop protection technologies and pre-crops
    was defined with correlation analysis in case of different crop rotations during the 2009/2010 crop year. Based on the results of the
    experiment, we found that in stands after corn pre-crop strong positive correlation was established between the crop protection level and the
    crop yield (0.543), the nutrient levels and the emergence of the four examined pathogens, and between the nutrient levels and the yield
    (0.639). Extremly strong positive correlation was observed between crop protection and yield (0.843) in triculture. Strong positive
    correlation was detected between the nutrient levels and the presence of the four examined pathogens, as well as between nutrient and
    lodging (0.688). Strong negative correlation was between the crop protection level and the four examined diseases both in biculture and
    triculture.

  • The possibility of use of the 0,01 M CaCl2 and Baker- Amacher extractants for the determination of plantavailable potassium
    7-15
    Views:
    74

    The Hungarian fertilizing recommendation systems use AL soil test for the evaluation of potassium supply. The 0.01 M CaCl2 is a definitely milder extractant, it extracts the easily soluble and exchangeable potassium amount. Its European introduction was already taken into consideration in 1994. The research project on this topic is started in several european countries, also in Hungary at the Department of Agricultural Chemisty of Agricultural University of Debrecen. Another advantage this multielement method is that the different element-ratios can also be calculated.
    The Baker-Amacher extractant’s principle is that it contains a known amount of K, P, Mg in the CaCl2 solution. During the soil extraction adsorption and desorption process take place, so the adsorption or desorption can be calculated from the original and the final concentrations.
    In this paper we introduce the results of comparing analysis of the samples (n=630) from Soil Information and Monitoring System. Our aim was to measure the use of new extractants beside conventional extractant (AL) for the evaluation of K-supply would be reasonable.
    It can be stated that there is a medium close relationship (r=0.75) between AL-K and 0.01 M CaCl2-K. My calculations confirmed the results of  former examinations, and proved that the two extractants don’t extract and change the same rate of K-fractions. We found that regression  between 0.01 M CaCl2 and AL depend on texture classes, pH classes, amount of lime, and organic matter content of soils.
    Comparing the relations between AL and Baker-Amacher we find relatively loose correlation (r=0.45). We stated that there are K-fixing soils among soils considered to be well supplied with potassium by AL. This might be caused by the high amount of mineral clay and the quality of mineral clay. We stated that the dK averages show that the Hungarian nutrient-supply categories characterize generally well K-supplement of soil.
    It can be stated that it would be necessary to use new extractants to specify evaluation of plant available K. We found that the 0.01 M CaCl2 and Baker-Amacher extractants could complete usefully the AL procedure and could help effective potassium fertilization.

  • Examination of drought stress of two genotype maize hybrids with different fertilization
    53-57
    Views:
    118

    In the growing season of 2019, we analysed stress resulting from climatic factors on maize hybrids of different genotypes, with the aim of gaining a better understanding of the physiological responses of each hybrid, which might support the elaboration of a cost-effective irrigation plan.

    Our experiments were carried out at the Látókép Experimental Station of the University of Debrecen on calcareous chernozem soil in a small-plot long-term field trial with strip plot design. In the scope of the experiment, N-fertilizer doses were applied as basic fertilizer and top-dressing in addition to the non-fertilized (control) treatment. The 60 and 120 kg N/ha doses applied as basic fertilizers in the spring were followed by top-dressing in the V6 phenophase with a +30 kg N/ha dose. Measurements were carried out with the involvement of the Renfor early (FAO 320) and Fornad (FAO 420) late maturity hybrids-

    The stomata of the plants became more and more closed with the progression of the phenological phases; their stomatal conductance decreased. However, the hybrids responded differently to environmental stress. In the case of the Renfor hybrid, the highest conductance (669 mmol/m2-s) was recorded in the V12 phenophase with the 150 kg N/ha treatment. The stomata were more open due to the high turgor pressure, allowing plants to evaporate properly. The plant was in its worst physiological condition on 2nd July, at the time of the appearance of the last leaf in the case of the 120 kg N dose (224 mmol/m2-s). The value measured in the V12 phenophase has already shown that the stomata were closing due to the self-regulating system of the plant. It would have been necessary to dispense irrigation water following the measurement. This confirms the finding that water stress can be prevented by measuring stomatal conductance.

    In the case of the Fornad hybrid, stomatal conductance was the highest on 12th June (630 mmol/m2-s) in the 90 kg N/ha treatment and it was the lowest (183 mmol/m2-s) in VT (emergence of the last leaf) phenophase in the 60 kg N/ha treatment. In this case, the appropriate time for applying irrigation water would have been early July, when the conditions for the plants were still adequate. Subsequently, the stomata began to close due to a reduction of the water resources available to them.

    There was a significant correlation between soil moisture and stomatal conductance, as well as between temperature and stomatal conductance.

  • How does the S-locus determining self-incompatibility in stone fruits work in self-compatible peach?
    93-100
    Views:
    102

    The majority of stone fruit species are self-incompatible, a feature that is determined by a specific recognition mechanism between the S-ribonuclease enzymes residing in the pistils and the F-box proteins expressed in the pollen tubes. Failure in the function of any component of this bipartite system resulted in self-compatibility (SC) in many cultivars of Prunus species. Peach (Prunus persica (L.) Batsch.) is the only species in the Prunoideae subfamily that is traditionally known to be self-compatible, but its molecular background is completely unknown. Isoelectric focusing and S-gene specific PCR revealed that SC is not due to functional inability of pistil ribonucleases. We hypothesize that SC may be a consequence of a kind of pollen-part mutation or the action of one or more currently unknown modifier gene(s). Only two S-alleles were identified in a set of peach genotypes of various origin and phenotypes in contrast to the 17–30 alleles described in self-incompatible fruit trees. Most important commercial cultivars carry the same S-allele and are in a homozygote state. This indicates the common origin of these cultivars and also the consequence of self-fertilization. According to the available information, this is the first report to elucidate the role of S-locus in the fertilization process of peach. 

  • The effect of and interaction between the biological bases and the agrotechnical factors on maize yield
    83-87
    Views:
    151
    The effect of and interaction between the biological bases and the agrotechnical factors on maize yield In our research, we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize. The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2; therefore, this experiment was half-industrial. We tested six hybrids with different genetic characteristics and growing seasons.
    We analysed the correlation between the nutrient supply and the yield of maize hybrids with a control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. The yield increasing effect of the fertilizer also depended on the number of plants per hectare to a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants ha-1.
    In 2015, the highest yield was produced by hybrid P9241 with N80+PK and 70 thousand plants per hectare. With the N160+PK fertilizer dosage, the same hybrid responded the best, followed by hybrids P9486 and DKC4717. Using the same fertilizer treatment, the 80 thousand plants per hectare population density resulted in decrease in the yield with most of the examined hybrids. In 2016, with the increase in the number of plants per hectare, even with non-fertilised treatment (control treatment), the yield could be increased in the case of each hybrid.
    Averaged over the different hybrids and fertilizer treatments, applying 80 thousand plants ha-1 instead of 60 thousand resulted in 1.0 ha-1 yield increase. In 2017, the number of plants had a slighter effect. With N160+PK treatment, in most cases no significant difference can be observed. The value of LSD5%: plant number: 0.20 t ha-1, hybrid: 0.28 t ha-1, interaction: 0.48 t ha-1. With N160+PK treatment, the hybrids produced yields between 10.07 and 12.45 t ha-1. When examining the three years in the average of the number of plants, with treatment without fertilisation, the average yield of hybrids reached 7.53 t ha-1. With N80+PK treatment, this value was 9.71 t ha-1 and with doubling the fertilizer dosage, this value increased to 10.42 t ha-1. No economic profit was gained as a result of applying double dosage of fertilizer; therefore, the N80+PK dosage can be considered ideal.
  • Integrated nutrient supply and varietal difference influence grain yield and yield related physio-morphological traits of durum wheat (Triticum turgidum L.) varieties under drought condition
    111-121
    Views:
    116

    The ever-growing world population entails an improvement in durum wheat grain yield to ensure an adequate food supply, which often gets impaired by several biotic and abiotic factors. Integrated nutrient management, such as nitrogen rate × foliar zinc × sulphur fertilization combined with durum wheat varieties were investigated in order to examine the dynamics of yield and yield related physio-morphological traits under drought conditions. The four durum wheat varieties, three-level of nutrient supply (i.e. control, sulphur, and zinc), and two nitrogen regimes (i.e. zero and 60 kg ha−1) were arranged in split-split plot design with three replications. Zinc and sulphur were applied as foliar fertilisation during the flag leaf stage, both at a rate of 3 and 4 liters ha-1, respectively. Results showed existence of genetic variability for grain yield, plant height, NDVI, SPAD and spike density. Foliar based application of zinc and sulphur at the latter stage improved the plant height. Nitrogen fertilized varieties with lower spike numbers showed to better yield formation. Co-fertilization of nitrogen and zinc improved grain yield of responsive varieties like Duragold by about 21.3%. Spikes per m2 were statistically insignificant for grain yield improvement. It could be inferred that the observed positive effect of sulphur, nitrogen and zinc application on physio-morphology and yield formation substantiates the need to include these essential nutrients in the cultivation system of durum wheat.

  • Results of Sulphur Fertilization Experiment with Oilseed Rape
    174-178
    Views:
    98

    The rape is definitely a sulphur-demanding crop, which yield and the quality of its oil is threaten by the emerging shortage of sulphur nowadays. We made sulphur fertilising trials on two places in the northeastern rape growing area (in Felsőzsolca and Mezőkövesd), in the season 2001/2002. We compared the result the 5 five treating set in 2 repeats on brown forest soil with the results of the control plots. We used FitoHorm 32 S sulphur solution as sulphur fertiliser, with the dose of 3, 6 and 10 litres per hectare, as well as the joint effects of sulphur and boron; and the effect of boron alone. On the assessment of our results we looked for relation between the sulphur fertilising, the seed production, the oil content and the protein content.

  • The effect of plant density on maize yield in average and extremely dry years
    7-16
    Views:
    94

    The yield safety of maize has not been satisfactory in Hungary for decades. Yield is influenced by the combination of several factors.
    In recent years, the frequency of dry years increased and fertilization decreased. These factors call for a rational determination of the plant density.
    I studied the relationship between plant density and yield in 2003-2004 and 2007 on meadow soil. 
    In 2003, the weather was dry. In the vegetation period, the amount of precipitation was 78.5 mm lower and the temperature was 0.97 °C higher than the average of 30 years, the number of hot days was 47-60 (days with a temperature higher than 30 °C). However, we obtained favourable results under experimental conditions in 2003 after wheat as a forecrop using the fertilizer Kemira Power. 
    The weather in 2004 was favourable. In the vegetation period, the amount of precipitation was 93.2 mm higher than the average of 30 years.  Although, the distribution of the precipitation could have been more favourable. The yield of the hybrids ranged between 8.87-10.42 t/ha. Among the studied seven hybrids, the early hybrids gave the highest yield at the highest plant density of 90 thousand plants/ha (PR38Y09, PR38A67, PR37D25, PR37M34). However, FAO 400-500 hybrids gave favourable results also at the low plant density of 45 thousand plants/ha (8-9 t/ha). At this plant density, the aeration of the plant stock was better and the hybrids were prone to bringing several cobs. Yield stagnated with increasing plant density (60 thousand plants/ha), then at 75-90 thousand plants per ha, the yield started to increase again.
    In 2004 the yield of hybrids was considerably higher than in the previous year. In contrast to yields of 8.87-10.42 t/ha in 2003, yields in 2004 were around 9-12 t/ha.
    The yield of the hybrid XO 902 P is above 12 t/ha already at a plant density of 45 thousand plants/ha. It gives maximum yield at the plant density of 90 thousand plants/ha.
    The hybrid PR38P92 showed a good response to changing plant density, but its yield was only 9 t/ha at the low plant density value.
    In a favourable year, the yield of the hybrids PR38B85, PR37W05, PR37D25, PR37K85 at a plant density of 45 thousand plants/ha 11 t/ha, while at the higher plant density of 90 thousand plants/ha, it ranges around 13-15 t/ha.

    Hybrids PR36K20, PR35Y54, PR34H31 have a good individual yield and they are prone to bringing several cobs in favourable years at a low plant density. Their maximum yield at the plant density of 90 thousand plants/ha is almost 16 t/ha.
    In 2007, the weather was similar to that of the extremely dry year of 2003. The amount of precipitation in the vegetation period was 41.9 mm lower than the average of 30 years and its distribution was not favourable either.
    In the optimum NPK fertilizer treatment at an optimum plant density, the yield of hybrids ranged between 9.32-10.73 t/ha. The highest yields of 10.22-10.73 t/ha were measured for hybrids PR38A79 (FAO 300) and PR35F73 at a relatively low plant density of 60 thousand plants/ha.
    In the average of the hybrids, the optimum NPK dosage was N 131, P2O5 82, K2O 93 kg/ha active ingredient.

  • Examination of Hybrid-specific nutrient supply at corn on chernozem soli
    91-95
    Views:
    132

    The effect of increasing fertilizer dosages on the yield of eight different maize hybrids (SY Ondina, NK Kansas, NK Lucius, NK Octet, NK Thermo, SY Flovita, SY Brillio, NX 47279) has been investigated in the crop-year of 2011. According to our results it can be stated that contrarily to the control treatment the application of different nutrient-levels has resulted a significant yield increment (2 000–5 800 kg ha-1).
    Based upon the results of this experiment we have drawn the conclusion that the nutrient level of 120 kg N+PK was the optimal for the investigated hybrids. The highest yield (14 475 kg ha-1–15 963 kg ha-1) of the hybrids with different genotypes has been produced in case of this fertilizer treatment. With the comparison of the control and the optimum-fertilizer treatments the yield-increasing effect of mineral fertilization and the different reaction of hybrids towards increasing fertilizer dosages have been proven. In case of the control treatments the best-yielding hybrids were NK Thermo (11 917 kg ha-1) and NX 47279 (11 617 kg ha-1). Contrarily on the optimal nutrient supply level the hybrids SY Brillio (15 876 kg ha-1) and NX 47279 (15 963 kg ha-1) have produced the highest yields. Summarizing, we can state that the hybrid NX 47279 has resulted stable and high yields in the fertilized treatments. Analysing the yield-increasing effect of 1 kg fertilizer active substance it was proven, that the hybrids SY Flovita (45.43 kg ha-1), SY Brillio (44.47 kg ha-1) and NX 47279 (42.33 kg ha-1) had a good reaction towards even lower nutrient supply levels as well. In case of the control treatment the average water utilization coefficient of the hybrids was significantly lower (35.2 kg mm-1), than in case of the optimal nutrient supply level (N120+PK) treatments (48.9 kg mm-1).
    Therefore the hybrid specific difference between the water utilization of genotypes could be revealed.

  • The impact of crop year and certain agrotechnical factors on maize yield
    13-16
    Views:
    119

    The experiment was set up with eight maize hybrids with different genetic characteristics in 2012. In our study were included hybrids with different length of growing season. We studied the effect of NKP fertilization and plant density on the yield. Comparing to controll treatment it was found that highest yield was at N40+PK treatment. It was three times higher than agro-ecological optimum. Due to the droughty year the effect of plant density it was minimum. The development rate in case of sowing date I. and II. showed an almost identical picture in the scope of the sowing date trial. However, hybrids with excellent adaptability were capable of a yield above average even in this extreme year.