Articles

Maize nutrient dynamics: growth, yield and sustainable practices: A narrative review

Published:
2025-12-02
Authors
View
Keywords
License

Copyright (c) 2025 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Osman, M. M. A., Kuunya, R., Alrasheed, R., Hassan, M. M., Wasikoyo, E., Gumisiriya, C., Mudawi, H. ibrahim, Elsalahi, R., & Rátonyi, T. (2025). Maize nutrient dynamics: growth, yield and sustainable practices: A narrative review. Acta Agraria Debreceniensis, 2, 83-91. https://doi.org/10.34101/actaagrar/2/15988
Received 2025-08-10
Accepted 2025-10-29
Published 2025-12-02
Abstract

Nutrient acquisition is the fundamental regulator of maize (Zea mays) growth, development, and yield. The present narrative review intends to integrate existing information on dynamics of nutrient uptake in maize under scrutiny for understanding how the processes affect growth and yield. We focus on the effective absorption and utilization of macronutrients (N, P and K) and micronutrients that promote plant health, grain development, and stress tolerance. Key determinants of nutrient availability (soil type, pH, organic matter, environment) and physiological or yield impacts of deficiency are studied. Strategies to optimize uptake efficiency precision application of fertilizer, organic fertilizers, and sustainable soil management are discussed. Optimizing these dynamics is central to maize productivity, enhancement and sustainable crop production. This review provides valuable insights into optimizing maize nutrition for improved food security and sustainable crop production.

References
  1. Al-Tamimi, S.K.; Farhood, A.N. (2022): Phosphate fertilizer and nano-magnesium fertilization effects on gene expression, growth, and yield traits of datura (Datura stramonium L.). SABRAO J. Breed. Genet. 54(4): 935–947.
  2. Amonette, J.; Joseph, S. (2009): Characteristics of Biochar—Micro-chemical Properties. In: Amonette J, Joseph S, editors. Biochar for Environmental Management: Science and Technology. London, UK: Earthscan,. 33–52.
  3. Arias B.; Pevida C.; Fermoso J.; Plaza M.G.; Rubiera, F.; Pis J.J. (2008): Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol., 89: 169–175.
  4. Astolfi, S; Celletti, S.; Vigani, G., Mimmo, T.; Cesco, S. (2021): Interaction Between Sulfur and Iron in Plants. Front. Plant Sci. 12:670308. https://doi.org/10.3389/fpls.2021.670308.
  5. Batool, M. (2023): ‘Nutrient Management of Maize’. Agricultural Sciences. IntechOpen. https://doi.org/10.5772/intechopen.112484
  6. Bender, S.F.; Heijden, M.G.A. van der (2015): Soil biota enhance agricultural sustainability byimproving crop yield, nutrient uptake and reducingnitrogen leaching losses. Journal of Applied Ecology, 52: 228–239. http://doi.org/10.1111/1365-2664.12351
  7. Bindraban, P.; Dimkpa, C.; Pandey, R. (2020): Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol. Fert. Soils, 56 (3), 299–317. http://doi.org/10.1007/s00374-019-01430-2
  8. Boesch, D.F.; Brinsfield, R.B.; Magnien, R.E. (2001): Chesapeake Bay eutrophication: Scientific understanding, ecosystem restoration, and challenges for agriculture. Journal of Environmental Quality, 30 (2):303–320.
  9. Bojtor, C.; Mousavi, S.M.N.; Illés, Á.; Golzardi, F.; Széles, A.; Szabó, A.; Nagy, J.; Marton, C.L. (2022): Nutrient Composition Analysis of Maize Hybrids Affected by Different Nitrogen Fertilisation Systems. Plants, 11, 1593. https://doi.org/10.3390/plants11121593
  10. Canellas, L.P.; Olivares, F.; Aguiar, N.; Jones, D.; Nebbioso, A.; Mazzei, P.; et al. (2015): Humic and fulvic acids as biostimulants in horticulture. Scientia Hortic. 182, 78–92. http://doi.org/10.1016/j.scienta.2015.09.013
  11. Clarkson, D.T.; Hanson, J.B. (1980): The Mineral Nutrition of Higher Plants. Annual Review of Plant Physiology, 31, 239–298. https://doi.org/10.1146/annurev.pp.31.060180.001323
  12. Dawar, K.; Khan, A.; Mian, I.A.; Khan, B.; Ali, S.; Ahmad, S.; et al. (2022): Maize productivity and soil nutrients variations by the application of vermicompost and biochar. PLoS ONE 17(5): e0267483. https://doi.org/10.1371/journal.pone.0267483
  13. Decrem, M.; Spiess, E.; Richner, W.; Herzog, F. (2007): Impact of Swiss agricultural policies on nitrate leaching from arable land. Agronomy for Sustainable Development, 27(3):243–253. https://doi.org/10.1051/agro:2007012
  14. Duan, Z.; Tan, X.; Ali, I.; Wu, X.; Cao, J.; Xu, Y.; Shi, L.; Gao, W.; Ruan, Y.; Chen, C. (2022): Comparison of organic matter (OM) pools in water, suspended particulate matter, and sediments in eutrophic Lake Taihu, China: implication for dissolved OM tracking, assessment, and management. Sci. Total Environ, 845:157257.
  15. Duchene, O.; Vian, J. F.; Celette, F. (2017): Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric. Ecosyst. Environ. 240, 148–161. https://doi.org/10.1016/j.agee.2017.02.019
  16. Ehtaiwesh, A. (2022): The effect of salinity on nutrient availability and uptake in crop plants. Journal of Applied Science Issue 9(2) 55–73.
  17. Elmer, W.H.; White, J.C. (2016): The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ. Sci., 3, 1072–1079. https://doi.org/10.1039/C6EN00146G
  18. Fageria, N.K.; Baligar, V.C.; Jones, C.A. (2010): Growth and Mineral Nutrition of Field Crops (3rd ed.). CRC Press. https://doi.org/10.1201/b10160
  19. FAOSTAT (2020): Food and Agriculture Organization of the United Nations (FAO). Rome: FAO.
  20. Farooq, M.; Hussain, M.; Wakeel, B.; Siddique Kadambot (2015): Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 35:461–481. https://doi.org/10.1007/s13593-015-0287-0
  21. Fang, X.; Yang, Y.; Zhao, Z.; Zhou, Y.; Liao, Y.; Guan, Z.; Chen, S.; Fang, W.; Chen, F.; Zhao, S. (2023): Optimum Nitrogen, Phosphorous, and Potassium Fertilizer Application Increased Chrysanthemum Growth and Quality by Reinforcing the Soil Microbial Community and Nutrient Cycling Function. Plants, 12(23), 4062. https://doi.org/10.3390/plants12234062
  22. Feng, F.; Jiang, Y.; Jia, Y.; Shang, C.; Lian, X.; Zang, Y.; Zhao, M. (2023): Risks of nutrients and metal(loid)s mobilization triggered by groundwater recharge containing reactive organic matter. J. Hydrol. 623, 129780. https://doi.org/10.1016/j.jhydrol.2023.129780
  23. Fontúrbel, M.T.; Enrique, J., Agustín, M.; José, A.V. (2024): "Contrasting immediate impact of prescribed fires and experimental summer fires on soil organic matter quality and microbial properties in the forest floor and mineral soil in Mediterranean black pine forest." Science of the Total Environment 907: 167669. https://doi.org/10.1016/j.scitotenv.2023.167669
  24. Getahun, S.; Kefale, H.; Gelaye, Y. (2024): Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review. The Scientific World Journal, Volume 2024, Article ID 2126734, 12 pages. https://doi.org/10.1155/2024/2126734
  25. Gong, H.; Xiang, Y.; Wako, B.K.; Jiao, X. (2022): Complementary effects of phosphorus supply and planting density on maize growth and phosphorus use efficiency. Front. Plant Sci. 13:983788. https://doi.org/10.3389/fpls.2022.983788
  26. Griffiths, M.; Roy, S.; Guo, H.; Seethepalli, A.; Huhman, D.; Ge, Y.; Sharp, R.; Fritschi, F.; York, L.(2021): A multiple ion-uptake phenotyping platform reveals shared mechanisms affecting nutrient uptake by roots. PLANT PHYSIOLOGY: 185: 781–795. http://doi.org/10.1093/plphys/kiaa080
  27. Cruz, J.C.; DA Silva, G.H.; Filho, I.A.P.; Neto, M.M.G. Magalhãe, P.C. (2010): Characterization of off-season maize cropping system of high productivity in 2008 and 2009. Revista Brasileira de Milho e Sorgo ,9:177–188. http://dx.doi.org/10.18512/1980-6477/rbms
  28. Gul, H.; Rahman, S.; Shahzad, A.; Gul, S.; Qian, M.; Xiao, Q., et al. (2021): Maize (Zea mays L.) productivity in response to nitrogen management in Pakistan. Am. J. Plant Sci. 12, 1173–1179. https://doi.org/10.4236/ajps.2021.128081
  29. Guo, H.L.; Tian, M.Z.; Ri, X.; Chen, Y.F. (2024): Phosphorus acquisition, translocation, and redistribution in maize. Journal of Genetics and Genomics, 52:287–296. https://doi.org/10.1016/j.jgg.2024.09.018
  30. He, Z.; Xue, S.; Zhang, T.; Yun, J. (2024): Effect of calcium and magnesium on starch synthesis in maize kernels and its physiological driving mechanism. Front. Plant Sci. 14:1332517. https://doi.org/10.3389/fpls.2023.133251
  31. Javaid, M.; Haleem, A.; Khan, I.; Suman, R. (2023): Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2:15–30. https://doi.org/10.1016/j.aac.2022.10.001
  32. Jezek, M.; Geilfus, C.; Bayer, A.; Mühling, K. (2015): Photosynthetic capacity, nutrient status, and growth of maize (Zea mays L.) upon MgSO4 leaf application. Frontiers in Plant Science, 5:1–10. https://doi.org/10.3389/fpls.2014.00781
  33. Ju, X.T.; Liu, X.J.; Zhang, F.S.; Zhen, Q.; Christie, P. (2004): Nitrogen fertilization, soil nitrate accumulation, and policy recommendations in several agricultural regions of China. Ambio, 33(6), 300–305.
  34. Kaur, H.; Kaur, H.; Kaur, H.; Srivastava, S. (2022): The beneficial roles of trace and ultratrace elements in plants. Plant Growth Regul. 100, 219e236.
  35. Kobayashi, T.; Nozoye, T.; Nishizawa, N.K. (2019): Iron transport and its regulation in plants. Free Radic. Biol. Med. 133, 11e20.
  36. Kumar, R.; Kumar, S.; Yashavanth, B.S.; Meena, P.C.; Ramesh, P.; Indoria, A.K.; Kundu, S.; Manjunath, M. (2020): Adoption of natural farming and its effect on crop yield and farmers’ livelihood in India. ICAR-National Academy of Agricultural Research Management, Hyderabad, India.
  37. Kumar, A.; Subbaiah, M.; Roy, J.; Phogat, S. ; Kaushik, M.; Saini, M.R.; Madhavan, J.; Sevanthi, A.M.; Mand, P.K. (2024): Strategies to utilize genome editing for increasing nitrogen use efficiency in crops. The Nucleus, 67:205–225. https://doi.org/10.1007/s13237-024-00475-5
  38. Lambers, H. (2022): Phosphorus acquisition and utilization in plants. Annu. Rev. Plant Biol. 73, 17–42.
  39. Li, H.; Wang, Y.; Chen, Q. (2022): Phosphate transporter genes and phosphorus acquisition in maize. Plant and Soil, 478(1), 45–58. https://doi.org/10.1007/s11104-021-05110-0
  40. Li, S.L.; Wang, S.; Shangguan, Z.P. (2019): Combined biochar and nitrogen fertilization at appropriate rates could balance the leaching and availability of soil inorganic nitrogen. Agric. Ecosyst. Environ., 276: 21–30. https://doi.org/10.1016/j.agee.2019.02.013
  41. Lim, S.L.; Lee, L.H.; Wu, T.Y. (2016): Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: Recent overview, greenhouse gases emissions and economic analysis. Journal of Cleaner Production. Elsevier Ltd, pp. 262–278. https://doi.org/10.1016/j.jclepro.2015.08.083
  42. Lisuma, J.B.; Semoka, J.M.R.; Semu, E. (2006): Maize yield response and nutrient uptake after micronutrient application on a volcanic soil. Agron. J., 98:402–406. https://doi.org/10.2134/agronj2005.0191
  43. Lilay, G.H.; Thiebaut, N.; Mee, D.A. Assuncao, A.G.L; Schjoerring, J.K.; Husted, S; Persson, D.P. (2024): Linking the key physiological functions ofessential micronutrients to their deficiencysymptoms in plants. New Phytologist 242: 881–902. https://doi.org/10.1111/nph.19645
  44. Liu, S.Y. (2020): Artificial intelligence (AI) in agriculture. IT Prof. 22(3):14–15. DOI: 10.1109/MITP.2020.2986121
  45. Lordkaew, S.; Dell, B.; Jamjod, S.; Rerkasem, B. (2010): Boron deficiency in maize. Plant Soil. 342, 207–220. https://doi.org/10.1007/s11104-010-0685-7
  46. Łukowiak, R.; Grzebisz, W.; Sassenrath, G. (2016): New insights into phosphorus management in agriculture — A crop rotation approach. Science of the Total Environment, 542: 1062–1077.
  47. Maathuis, F.J.M. (2009): Physiological functions of mineral macronutrients, Curr. Opin. Plant Biology, 12: 250–258.
  48. Mahdi, M.A.H.S.; Al-Shamerry, M.M.G.; Taha, A.H.; Alwan, M.H.; Al-Khaykanee, A.H.; Khashan, A.A.A. (2024): Micronutrients and planting time effects on maize growth, fertility, and yield-related traits under heat stress conditions. SABRAO J. Breed. Genet. 56(1): 433–443. http://doi.org/10.54910/sabrao2024.56.1.39
  49. Manásek, J.; Lošák, T.; Prokeš, K.; Hlušek, J.; Vítˇezová, M.; Škarpa, P.; Filipˇcík, R. (2013): Effect of nitrogen and potassium fertilization on micronutrient content in grain maize (Zea mays L.). Acta Univ. Agric. Silvic. Mendel. Brun., 61, 123–128. https://doi.org/ 10.11118/actaun201361010123.
  50. Marschner, Horst. (2012): "Marschner's mineral nutrition of higher plants."(ed.: Petra Marschner). Elsevier Ltd.
  51. Martins, K.V.; Dourado-Neto, D.; Reichardt, K.; de Jong van Lier, Q.; Favarin, J.L.; Sartori, F.F.; Felisberto, G.; Mello, S.C. (2017): :Preliminary Studies to Characterize the Temporal Variation of Micronutrient Composition of the Above Ground Organs of Maize and Correlated Uptake Rates. Front. Plant Sci. 8:1482. http://doi.org/10.3389/fpls.2017.01482
  52. Mendes, J.; Chaves, L.; Fernandes, O.; Dantas, E.; Laurentino, L.; Silva, A.; Oliveira, L.; Santos, B.; Kubo, G. (2022): Symptoms of deficiency and initial growth of maize cultivated with biochar under nutrient omission. Semina: Ciênc. Agrár. Londrina, v. 43, n. 5, 2079–2092.
  53. Muratore, C.; Espen, L.; Prinsi, B. (2021): Nitrogen Uptake in Plants: The Plasma Membrane Root Transport Systems from a Physiological and Proteomic Perspective. Plants, 10(4), 681. https://doi.org/10.3390/plants10040681
  54. Neina, D. (2019): The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, 1–9.
  55. Njoroge, R.; Otinga, A.N.; Okalebo, J.R.; Pepela, M.; Merckx, R. (2017): Occurrence of poorly responsive soils in western Kenya and associated nutrient imbalances in maize (Zea mays L.). Field Crops Res., 210, 162–174. https://doi.org/10.1016/j.fcr.2017.05.015
  56. Ordóñez, R.A.; Pico, L.B. O.; Dohleman, F.G.; Fernández-Juricic, E.; Verhagen, G.S.; Vyn, T.J. (2024): Short-statured maize achieved similar growth and nitrogen uptake but greater nitrogen efficiencies than conventional tall maize. Crop Sci., 1–19. https://doi.org/10.1002/csc2.21345
  57. Paudel, M.N.; Sah, S.K.; Adhikari, S. (2015): Effect of nitrogen and potassium levels on growth and yield of hybrid maize. Journal of Maize Research and Development, 1(1): 134–139.
  58. Qayyum, M.F.; Abid, M., Danish, S.; Saeed, M.K.; Ali, M.A. (2014): Effects of various biochars on seed germination and carbon mineralization in an alkaline soil. Pakistan J Agric Sci., 51: 977–982.
  59. Rashed, M.H.; Hoque, T.S.; Jahangir, M.M.R.; Hashem M.A. (2019): Manganese as a Micronutrient in Agriculture: Crop Requirement and Management. Journal Environment Science & Natural Resources, 12(1&2):225–242. DOI: 10.3329/jesnr.v12i1-2.52040
  60. Rehman, R.; Asif, M.; Cakmak, I.; Ozturk, L. (2021): Differences in uptake and translocation of foliar-applied Zn in maize and wheat. Plant Soil, 462: 235–244. [CrossRef]. https://doi.org/10.1007/s11104-021-04867-3
  61. Roberts, T.L. (2008): Improving nutrient use efficiency. Turkish Journal of Agriculture and Forestry, 32 (3):177–182.
  62. Römheld, V.; Kirkby, E.A. (2010): "Research on potassium in agriculture: needs and prospects." Plant and Soil, 335: 155–180.
  63. Sandhu, N.; Sethi, M.; Kumar, A.; Dang, D.; Singh, J.; Chhuneja, P. (2021): Biochemical and genetic approaches improving nitrogen use efficiency in cereal crops: a review. Front. Plant Sci. 12:657629. https://doi.org/10.3389/fpls.2021.65 7629
  64. Siddiqui, M.H.; Oad, F.C.; Jamro, G.H. (2006): Emergence and nitrogen use efficiency of maize under different tillage operations and fertility levels. Asian J. Plant Sci. 5, 508–510. https://doi.org/10.3923/ajps.2006.508.510
  65. Singh, D.K.; Pandey, K.; Pandey, U.B.; Bhonde, S.R. (2002): “Effect of Farmyard Manure Combined with Foliar Application of NPK Mixture and Micronutrients on Growth, Yield and Quality of Onion,” Newsletter-National Hort.Res. Develop. Foundation, Vol.21-22, No. 1, 1–7.
  66. Sitko, K.; Gieroń, Ż.; Szopiński, M.; Zieleźnik-Rusinowska, P.; Rusinowski, S.; Pogrzeba, M.; Daszkowska-Golec, A.; Kalaji, H.M.; Małkowski, E. (2019): Influence of short-term macronutrient deprivation in maize on photosynthetic characteristics, transpiration and pigment content. Sci. Rep, 9: 14181. https://doi.org/10.1038/s41598-019-50579-1
  67. Smith, S.; Jakobsen, I.; Grønlund, M.; Smith F. (2011): Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition. Plant Physiology, 156: 1050–1057.
  68. Smith, S.E.; Read, D.J. (2008): Mycorrhizal Symbiosis, 3rd edn. Academic Press, Boston.
  69. Srivastav, A.L.; Patel, N.; Rani, L.; Kumar, P.; Dutt, I.; Maddodi, B.S.; Chaudhary, V.K. (2024): Sustainable options for fertilizer management in agriculture to prevent water contamination: a review. Environment, Development and Sustainability, 26:8303–8327 https://doi.org/10.1007/s10668-023-03117-z
  70. Ssemugenze, B.; Akasairi, O.; Ronald, K.,; Costa, G.; Csaba, B.; János, N.; Adrienn, S.; Árpád, I. (2025): "Enhancing Maize Production Through Timely Nutrient Supply: The Role of Foliar Fertiliser Application" Agronomy 15, no. 1: 176. https://doi.org/10.3390/agronomy15010176
  71. Sun, Z.; Yang, R.; Wang, J.; Zhou, P.; Gong, Y.; Gao, F.; Wang, C. (2024): Effects of Nutrient Deficiency on Crop Yield and Soil Nutrients Under Winter Wheat–Summer Maize Rotation System in the North China Plain. Agronomy, 14: 2690. https://doi.org/10.3390/agronomy14112690
  72. Thenveettil, N.; Reddy, K.N.; Reddy, K.R. (2024): Effects of Potassium Nutrition on Corn (Zea mays L.) Physiology and Growth for Modeling. Agriculture, 14: 968. https://doi.org/10.3390/agriculture14070968
  73. Thompson, M.W. (2022): Regulation of zinc-dependent enzymes by metal carrier proteins. Biometals 35: 187–213.
  74. Thuynsma, R.; Valentine, A.; Kleinert, A. (2014): Phosphorus deficiency affects the allocation of below-ground resources to combined cluster roots and nodules in Lupinus albus. J. Plant Physiol., 171: 285–291. https://doi.org/10.1016/j.jplph.2013.09.001
  75. Ullah, I.; Muhammad, D.; Musarat, M. (2025): Effect of Various Nitrogen and Sulfur Sources on Maize-Wheat Yield and N: S Uptakes Under Two Different Climatic Conditions. Agric Res, 14(1):188–199. https://doi.org/10.1007/s40003-024-00749-z
  76. Usandivaras, L.M.A.; Gutiérrez-Boem, F.H.; Salvagiotti, F. (2018): Contrasting Effects of Phosphorus and Potassium Deficiencies on Leaf Area Development in Maize. Crop Sci., 58: 2099–2109. https://doi.org/10.2135/cropsci2018.02.0092
  77. Wang, X.; Yan, J.; Zhang X.; Zhang, S.; Chen, Y. (2020): Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays L) productivity on the Loess Plateau. PLoS One. 25;15 (8):e0238042. https://doi.org/10.1371/journal.pone.0238042
  78. Welch, R.M (2003): “Farming for Nutritious Foods: Agricultural Technologies for Improved Human Health,” In:IFA-FAO Agricultural Conference, Rome, Italy.
  79. Yerli, C; Ustun, S; Taskin, Oztas; Selda, O. (2025): Fertility and heavy metal pollution in silage maize soil irrigated with different levels of recycled wastewater under conventional and no-tillage practices. Irrigation Science, 43:221–238. https://doi.org/10.1007/s00271-024-00927-5
  80. Zhang, M.; Hu, Y.; Han, W.; Chen, J.; Lai, J.; Wang,Y. (2023): Potassium nutrition of maize: Uptake, transport, utilization, and role in stress tolerance. The Crop Journal, 11:1048–1058. https://doi.org/10.1016/j.cj.2023.02.009
  81. Zhou, T.; Wang, L.; Li, S.; Gao, Y.; Du, Y.; Zhao, L., et al. (2019): Interactions between light intensity and phosphorus nutrition affect the p uptake capacity of maize and soybean seedling in a low light intensity area. Front. Plant Sci. 10. https://doi.org/10.3389/fpls.2019.00183