Articles

Soil, nutrient, and fertiliser requirements for maize (Zea mays) production: A narrative review

Published:
2025-06-08
Authors
View
Keywords
License

Copyright (c) 2025 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Kuunya, R., Mustafa Ahmed Osman, M. ., & Ragán, P. (2025). Soil, nutrient, and fertiliser requirements for maize (Zea mays) production: A narrative review. Acta Agraria Debreceniensis, 1, 85-97. https://doi.org/10.34101/actaagrar/1/15223
Received 2024-11-30
Accepted 2025-03-04
Published 2025-06-08
Abstract

Maize (Zea mays) is a key staple crop essential for global food security, with its productivity heavily influenced by soil, nutrient, and fertiliser management. This review examines the requirements for optimal maize production by analysing recent literature on soil properties, nutrient uptake, and fertilisation practices. A systematic approach was used to gather relevant studies from Google Scholar, Scopus, and Web of Science, focusing on peer-reviewed articles, books, and conference proceedings published in the last 10 years. Keywords such as “maize soil requirements” and “nutrient management for maize” guided the search, and both global and region-specific research were included to capture diverse agricultural systems and environments. Key insights were extracted to understand best practices, challenges, and technological advancements influencing maize yield. The findings provide a comprehensive overview of the current state of knowledge on soil and nutrient management for maize cultivation, highlighting optimal practices and emerging trends in fertilisation techniques. The review aims to support improved management strategies for yield maximisation and sustainable maize production across various agricultural landscapes, ensuring food security in the face of changing environmental conditions.

References
  1. Abdu, A.; Laekemariam, F.; Gidago, G.; Kebede, A.; Getaneh, L. (2023): Variability analysis of soil properties, mapping, and crop test responses in Southern Ethiopia. Heliyon, 9(3), e14013. https://doi.org/10.1016/j.heliyon.2023.e14013
  2. Abdulraheem, M.I.; Zhang, W.; Li, S.; Moshayedi, A.J.; Farooque, A.A.; Hu, J. (2023): Advancement of Remote Sensing for Soil Measurements and Applications: A Comprehensive Review. Sustainability, 15(21), 15444. https://doi.org/10.3390/su152115444
  3. Adelabu, D.B.; Modi, A.T. (2017): Planting Dates and Harvesting Stages Influence on Maize Yield under Rain-Fed Conditions. Journal of Agricultural Science, 9(9), 43. http://dx.doi.org/10.5539/jas.v9n9p43
  4. Agegnehu, G.; Amede, T.; Erkossa, T.; Yirga, C.; Henry, C.; Tyler, R. (2021): Extent and management of acid soils for sustainable crop production system in the tropical agroecosystems: a review. Acta Agriculturae Scandinavica, Soil & Plant Science, 71(9), 852-869. https://doi.org/10.1080/09064710.2021.1954239
  5. Ahmed, U.; Lin, J.C.W.; Srivastava, G.; Djenouri, Y. (2021): A nutrient recommendation system for soil fertilization based on evolutionary computation. Computers and Electronics in Agriculture, 189, 106407. https://doi.org/10.1016/j.compag.2021.106407
  6. Akinnuoye-Adelabu, D.B.; Mabhaudhi, T.; Modi, A.T. (2019): Interactive effect of planting date and fertiliser application on maize growth and yield under dryland conditions. South African Journal of Plant and Soil, 36(3), 189-198. https://doi.org/10.1080/02571862.2018.1525772
  7. Alam, M.K.; Bell, R.W.; Salahin, N.; Pathan, S.; Mondol, A.T.M.A.I.; Alam, M.J.; Rashid, M.H.; Paul, P.L.C.; Hossain, M.I.; Shil, N.C. (2018): Banding of Fertilizer Improves Phosphorus Acquisition and Yield of Zero Tillage Maize by Concentrating Phosphorus in Surface Soil. Sustainability, 10(9), 3234. https://doi.org/10.3390/su10093234
  8. Aliyu, K.T.; Huising, J.; Kamara, A.Y.; Jibrin, J.M.; Mohammed, I.B.; Nziguheba, G.; Adam, A.M.; Vanlauwe, B. (2021): Understanding nutrient imbalances in maize (Zea mays L.) using the diagnosis and recommendation integrated system (DRIS) approach in the Maize belt of Nigeria. Scientific Reports, 11, 16018. https://doi.org/10.1038/s41598-021-95172-7
  9. Al-Shammary, A.A.G.; Al-Shihmani, L.S.S.; Fernández-Gálvez, J.; Caballero-Calvo, A. (2024): Optimizing sustainable agriculture: A comprehensive review of agronomic practices and their impacts on soil attributes. Journal of Environmental Management, 364, 121487. https://doi.org/10.1016/j.jenvman.2024.121487
  10. Amali, P.E.; Namo, O.A.T. (2015): Effect of time of fertilizer application on growth and yield of maize (Zea mays L.) in Jos - plateau environment. Global Journal of Agricultural Sciences, 14(1), 1. https://doi.org/10.4314/gjass.v14i1.1
  11. Arumugam, B.; Udayasoorian, C.; Javabalakrishnan, R.M.M. (2019): Effect of Subsurface Drainage System on Maize Growth, Yield and Soil Quality. International Journal of Current Microbiology and Applied Sciences, 8(02), 1206–1215. https://doi.org/10.20546/ijcmas.2019.802.140
  12. Barłóg, P.; Grzebisz, W.; Łukowiak, R. (2022): Fertilizers and Fertilization Strategies Mitigating Soil Factors Constraining Efficiency of Nitrogen in Plant Production. Plants (Basel), 11(14), 1855. https:doi.org/10.3390/plants11141855
  13. Barrow, N.J.; Hartemink, A.E. (2023): The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil, 487, 21–37. https://doi.org/10.1007/s11104-023-05960-5
  14. Batool, M. (2023): Nutrient Management of Maize. IntechOpen. https://doi.org/10.5772/intechopen.112484
  15. Battisti, M.; Moretti, B.; Blandino, M.; Grignani, C.; Zavattaro, L. (2023): Maize response to nitrogen and phosphorus starter fertilisation in mineral-fertilised or manured systems. The Crop Journal, 11(3), 922–932. https://doi.org/10.1016/j.cj.2022.09.010
  16. Battisti, M.; Zavattaro, L.; Capo, L.; Blandino, M. (2022): Maize response to localized mineral or organic NP starter fertilization under different soil tillage methods. European Journal of Agronomy, 138, 126534. https://doi.org/10.1016/j.eja.2022.126534
  17. Beg, S.; Islam, M.; Rahman, K.W. (2024): Information and behavior: Evidence from fertilizer quantity recommendations in Bangladesh. Journal of Development Economics, 166, 103195. https://doi.org/10.1016/j.jdeveco.2023.103195
  18. Belete, F.; Dechassa, N.; Molla, A.; Tana, T. (2018): Effect of split application of different N rates on productivity and nitrogen use efficiency of bread wheat (Triticum aestivum L.). Agriculture and Food Security, 7(92). https://doi.org/10.1186/s40066-018-0242-9
  19. Bhadu, A.; Singh, B.; Gulshan, T.; Kumawat, S.N.; Choudhary, R.; Farooq, F. (2022): Customized Fertilizer: A Key for Enhanced Crop Production. International Journal of Plant and Soil Science, 34(23), 954–964. http://dx.doi.org/10.9734/ijpss/2022/v34i232505
  20. Bhat, S.A.; Qadri, S.A.A.; Dubbey, V.; Sofi, I.B.; Huang, N.F. (2024): Impact of crop management practices on maize yield: Insights from farming in tropical regions and predictive modeling using machine learning. Journal of Agriculture and Food Research, 18, 101392. https://doi.org/10.1016/j.jafr.2024.101392
  21. Bienert, M.D.; Junker, A.; Melzer, M.; Altmann, T.; Wiren, N.; Bienert, G.P. (2023): Boron deficiency responses in maize (Zea mays L.) roots. Journal of Plant Nutrition and Soil Science. https://doi.org/10.1002/jpln.202300173
  22. Blandino, M.; Battisti, M.; Vanara, F.; Reyneri, A. (2022): The synergistic effect of nitrogen and phosphorus starter fertilization sub-surface banded at sowing on the early vigor, grain yield and quality of maize. European Journal of Agronomy, 137, 126509. https://doi.org/10.1016/j.eja.2022.126509
  23. Boansi, D.; Owusu, V.; Donkor, E. (2024): Impact of integrated soil fertility management on maize yield, yield gap and income in northern Ghana. Sustainable Futures, 7, 100185. https://doi.org/10.1016/j.sftr.2024.100185
  24. Bojtor, C.; Illes, A.; Mousavi, S.M.N.; Széles, A.; Tóth, B.; Nagy, J.; Marton, C.L. (2021): Evaluation of the Nutrient Composition of Maize in Different NPK Fertilizer Levels Based on Multivariate Method Analysis. International Journal of Agronomy, 1–13. https://doi.org/10.1155/2021/5537549
  25. Brunelle, S. (2020): Appendix P: Guidance for Soil Collection, Characterization, and Application for Biothreat Agent Detection Method and Site Evaluations. Journal of AOAC International 103(4), 873–881. https://doi.org/10.1093/jaoacint/qsaa044
  26. Bucagu, C.; Ndoli, A.; Cyamweshi, A.R.; Nabahungu, L.N.; Mukuralinda, A.; Smethurst, P. (2020): Determining and managing maize yield gaps in Rwanda. Food Security, 12, 1269–1282. https://doi.org/10.1007/s12571-020-01059-2
  27. Buthelezi, S.; Mutanga, O.; Sibanda, M.; Odindi, J.; Clulow, A.D.; Chimonyo, V.G.P.; Mabhaudhi, T. (2023): Assessing the Prospects of Remote Sensing Maize Leaf Area Index Using UAV-Derived Multi-Spectral Data in Smallholder Farms across the Growing Season. Remote Sensing, 15(6), 1597. https://doi.org/10.3390/rs15061597
  28. Cao, Z.Y.; Chen, Z.H.; Tang, B.; Zeng, Q.; Guo, H.L.; Huang, W.H.; Luo, Y.; Shen, S.; Zhou, S.L. (2024): The effects of sowing date on maize: Phenology, morphology, and yield formation in a hot subtropical monsoon region. Field Crops Research, 309, 109309. https://doi.org/10.1016/j.fcr.2024.109309
  29. Capo, L.; Battisti, M.; Blandino, M. (2024): The role of zinc fertilization and its interaction with nitrogen and phosphorus starter fertilization on early maize development and grain yield. Field Crops Research, 307, 109245. https://doi.org/10.1016/j.fcr.2023.109245
  30. Celestina, C.; Hunt, J.R.; Sale, P.W.G.; Franks, A.E. (2019): Attribution of crop yield responses to application of organic amendments: A critical review. Soil and Tillage Research, 186, 135–145. https://doi.org/10.1016/j.still.2018.10.002
  31. Chen, D.; Liu, H.; Ning, Y.; Xu, C.; Zhang, H.; Lu, X.; Wang, J.; Xu, X.; Feng, Y.; Zhang, Y. (2022). Reduced nitrogen fertilization under flooded conditions cut down soil N2O and CO2 efflux: An incubation experiment. Journal of Environmental Management, 324, 116335. https://doi.org/10.1016/j.jenvman.2022.116335
  32. Cheng, M.; Sun, C.; Nie, C.; Liu, S.; Yu, X.; Bai, Y.; Liu, Y.; Meng, L.; Jia, X.; Liu, Y.; Zhou, L.; Nan, F.; Cui, T.; Jin, X. (2023): Evaluation of UAV-based drought indices for crop water conditions monitoring: A case study of summer maize. Agricultural Water Management, 287, 108442. https://doi.org/10.1016/j.agwat.2023.108442
  33. Choudhary, M.; Jat, H.S.; Mukhopadhyay, R.; Kakraliya, M.; Poonia, T.; Phogat, A.; Dixit, B.; Kumar, R.; Arora, S.; Yadav, R.K.; Krishnamurthy, S.L.; Sharma, P.C. (2023): Functional diversity and behavioral changes of microbial communities under salt affected soils. Applied Soil Ecology, 190, 105017. https://doi.org/10.1016/j.apsoil.2023.105017
  34. Datta, S.; Taghvaeian, S.; Stivers, J.W. (2017): Understanding Soil Water Content and Thresholds For Irrigation Management. https://doi.org/10.13140/RG.2.2.35535.89765
  35. Dawar, K.: Khan, A.; Mian, I.A.; Khan, B.; Ali, S.; Ahmad, S.; Szulc, P.; Fahad, S.; Datta, R.; Hatamleh, A.A.; Al-Dosary, M.A.; Danish, S. (2022): Maize productivity and soil nutrients variations by the application of vermicompost and biochar. PLoS One, 17(5), e0267483. https:doi.org/10.1371/journal.pone.0267483
  36. Djaman, K.; Allen, S.; Djaman, D.S.; Koudahe, K.; Irmak, S.; Puppala, N.; Darapuneni, M.K.; Angadi, S.V. (2022): Planting date and plant density effects on maize growth, yield and water use efficiency. Environmental Challenges, 6, 100417. https://doi.org/10.1016/j.envc.2021.100417
  37. Ejigu, W.; Selassie, Y.G.; Elias, E.; Molla, E. (2023): Effect of lime rates and method of application on soil properties of acidic Luvisols and wheat (Triticum aestivum, L.) yields in northwest Ethiopia. Heliyon, 9(3), e13988. https://doi.org/10.1016/j.heliyon.2023.e13988
  38. Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. (2022): Global maize production, consumption and trade: trends and R&D implications. Food Security, 14, 1295–1319. https://doi.org/10.1007/s12571-022-01288-7
  39. Fadl, M.E.; AbdelRahman, M.A.E.; El-Desoky, A.I.; Sayed, Y.A. (2024): Assessing soil productivity potential in arid region using remote sensing vegetation indices. Journal of Arid Environments, 222, 105166. https://doi.org/10.1016/j.jaridenv.2024.105166
  40. Fageria, N.K.; Nascente, A.S. (2014): Management of Soil Acidity of South American Soils for Sustainable Crop Production. Advances in Agronomy, 128, 221–275. https://doi.org/10.1016/B978-0-12-802139-2.00006-8
  41. Faria, M.; Bertocco, T.; Barroso, A.; Carvalho, M.; Fonseca, F.; Matos, C.D.; Figueiredo, T.; Braga, A.S.; Valente, T.; Jiménez-Ballesta, R. (2023): A Comparison of Analytical Methods for the Determination of Soil pH: Case Study on Burned Soils in Northern Portugal. Fire, 6(6), 227. https://doi.org/10.3390/fire6060227
  42. Ferreira, A.C.M.; Souza, H.A.; Sagrilo, E.; Júnior, G.B.S.; Natale, W.; Sobral, A.H.S.; Vera, G.S.; Santos, S.F.C.B. (2024|): Absorption, partitioning, and export of nutrients by phenological stage in maize cultivated in Eastern Maranhão, Brazil. Journal of Plant Nutrition, 47(2), 240–256. https://doi.org/10.1080/01904167.2023.2275072
  43. Finch, H.J.S.; Samuel, A.M.; Lane, G.P.F. (2014): Organic crop husbandry. In Lockhart & Wiseman’s Crop Husbandry Including Grassland (Ninth Edition) – Food Science, Technology and Nutrition, 240–262. https://doi.org/10.1533/9781782423928.2.245
  44. García, S.L.V.; Casasola, F.N.R.; Cortés, J.B.; Medina, A.A.; Páez, K.M.M.; Villanueva, R.O.C.; Horcasitas, M.C.M. (2017): Enhancing Phosphorus and Nitrogen Uptake in Maize Crops with Food Industry Biosolids and Azotobacter nigricans. Plants, 12(17), 3052. https://doi.org/10.3390/plants12173052
  45. Gerendás, J.; Führs, H. (2023): The significance of magnesium for crop quality. Plant and Soil, 368, 101–128. https://doi.org/10.1007/s11104-012-1555-2
  46. Getahun, S.; Kefale, H.; Gelaye, Y. (2024): Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review. The Scientific World Journal, 1–12. https://doi.org/10.1155/2024/2126734
  47. Goldan, E.; Nedeff, V.; Barsan, N.; Culea, M.; Panainte-Lehadus, M.; Mosnegutu, E.; Tomozei, C.; Chitimus, D.; Irimia, O. (2023): Assessment of Manure Compost Used as Soil Amendment—A Review. Processes, 11(4), 1167. https://doi.org/10.3390/pr11041167.
  48. Grabovskyi, M.; Kucheruk, P.; Pavlichenko, K.; Roubík, H. (2023): Influence of macronutrients and micronutrients on maize hybrids for biogas production. Environmental Science and Pollution Research, 30, 70022-70038. https://doi.org/10.1007/s11356-023-27235-3
  49. Grzebisz, W.; Łukowiak, R. (2021): Nitrogen Gap Amelioration Is a Core for Sustainable Intensification of Agriculture—A Concept. Agronomy, 11(3), 419. https://doi.org/10.3390/agronomy11030419
  50. Guerrero, A.; Mouazen, A.M. (2021): Evaluation of variable rate nitrogen fertilization scenarios in cereal crops from economic, environmental and technical perspective. Soil and Tillage Research, 213, 105110. https://doi.org/10.1016/j.still.2021.105110
  51. Guido, V.; Finzi, A.; Ferrari, O.; Riva, E.; Quílez, D.; Herrero, E.; Provolo, G. (2020): Fertigation of Maize with Digestate Using Drip Irrigation and Pivot Systems. Agronomy, 10(10), 1453. https://doi.org/10.3390/agronomy10101453
  52. Hasanain, M.; Singh, V.K.; Rathore, S.S.; Meena, V.S.; Meena, S.K.; Shekhawat, K.; Singh, R.K.; Dwivedi, B.S.; Singh, R.; Babu, S.; Upadhyay, P.K.; Kumar, A.; Kumar, A.; Fatima, A.; Verma, G.; Kumar, S. (2024): Crop establishment and nutrient management options: Optimizing productivity, maximize profitability and mitigating adverse climatic conditions in the maize-based production system of Northwest India. Field Crops Research, 318, 109606. https://doi.org/10.1016/j.fcr.2024.109606
  53. Hossain, Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Bolan, N. (2020): Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4). https://doi/10.1007/s42773-020-00065-z
  54. Hua, Z.; Liu, R.; Chen, Y.; Liu, G.; Li, C.; Song, Y.; Cao, Z.; Li, W.; Weifeng, L.; Lu, C.; Liu, Y. (2020): Contamination of aflatoxin induces severe hypertotoxicity through multiple mechanisms. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.605823
  55. Huang, H.; Wu, Q.; Liu, F.; Zhang, Z.; Liu, B.; Zhou, G.; Cao, B.; Bangura, K.; Cai, T.; Gao, Z.; Zhang, P.; Jia, Z.; Wu, P. (2024): Influence of the Depth of Nitrogen-Phosphorus Fertilizer Placement in Soil on Maize Yielding and Carbon Footprint in the Loess Plateau of China. Agronomy, 14(4), 805. https://doi.org/10.3390/agronomy14040805
  56. Huang, C.; Gao, Y.; Qin, A.; Liu, Z.; Zhao, B.; Ning, D.; Ma, S.; Duan, A.; Liu, Z. (2022): Effects of waterlogging at different stages and durations on maize growth and grain yields. Agricultural Water Management, 261, 107334. https://doi.org/10.1016/j.agwat.2021.107334
  57. Islam, M.R.; Oliullah, K.; Kabir, M.M.; Alom, M.; Mridha, M.F. (2023): Machine learning enabled IoT system for soil nutrients monitoring and crop recommendation. Journal of Agriculture and Food Research, 14, 100880. https://doi.org/10.1016/j.jafr.2023.100880
  58. Jiaying, M.; Tingting, C.; Jie, L.; Weimeng, F.; Baohua, F.; Guangyan, L.; Hubo, L.; Juncai, L.; Zhihai, W.; Longxing, T.; Guanfu, F. (2022): Functions of Nitrogen, Phosphorus and Potassium in Energy Status and Their Influences on Rice Growth and Development. Rice Science, 29(2), 166–178. https://doi.org/10.1016/j.rsci.2022.01.005
  59. Kebede, H.; Sui, R.; Fisher, D.; Reddy, K.; Bellaloui, N.; Molin, W. (2014): Corn Yield Response to Reduced Water Use at Different Growth Stages. Agricultural Sciences, 5(13), 1305–1315. https:doi.org/10.4236/as.2014.513139
  60. Khan, F.; Khan, S.; Fahad, S.; Faisal, S.; Hussain, S.; Ali, S.; Ali, A. (2014): Effect of Different Levels of Nitrogen and Phosphorus on the Phenology and Yield of Maize Varieties, American Journal of Plant Sciences, 5(17). https://doi.org/10.4236/ajps.2014.517272
  61. Khan, F.; Siddique, A.B.; Shabala, S.; Zhou, M.; Zhao, C. (2023): Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants (Basel), 12(15), 2861. https://doi.org/10.3390/plants12152861
  62. Koomson, E.; Muoni, T.; Marohn, C.; Nziguheba, G.; Öborn, I.; Cadisch, G. (2020): Critical slope length for soil loss mitigation in maize-bean cropping systems in SW Kenya. Geoderma Regional, 22, e00311. https://doi.org/10.1016/j.geodrs.2020.e00311
  63. Korzeniowska, J.; Stanislawska-Glubiak, E. (2022): Differences in the Concentration of Micronutrients in Young Shoots of Numerous Cultivars of Wheat, Maize and Oilseed Rape. Agronomy, 12(11), 2639. https://doi.org/10.3390/agronomy12112639
  64. Koudahe, K.; Allen, S.C.; Djaman, K. (2022): Critical review of the impact of cover crops on soil properties. International Soil and Water Conservation Research, 10(3), 343–354. https://doi.org/10.1016/j.iswcr.2022.03.003
  65. Kumar, A.; Pathak, H.; Bhadauria, S.; Sudan, J. (2021): Aflatoxin contamination in food crops: causes, detection, and management: a review. Food Production, Processing and Nutrition, 3(17). https://doi.org/10.1186/s43014-021-00064-y
  66. Kumar, P.; Choudhary, M.; Hossain, F.; Singh, N.K.; Choudhary, P.; Gupta, M.; Singh, V.; Chikappa, G.K.; Kumar, R.; Kumar, B.; Jat, S.L.; Rakshit, S. (2019): Nutritional quality improvement in maize (Zea mays): Progress and challenges. The Indian Journal of Agricultural Sciences, 89(6). https:doi.org/10.56093/ijas.v89i6.90756
  67. Kumari, V.V.; Banerjee, P.; Verma, V.C.; Sukumaran, S.; Chandran, M.A.S.; Gopinath, K.A.; Venkatesh, G.; Yadav, S.K.; Singh, V.K.; Awasthi, N.K. (2022): Plant Nutrition: An Effective Way to Alleviate Abiotic Stress in Agricultural Crops. International Journal of Molecular Sciences, 23(15), 8519. https://doi.org/10.3390/ijms23158519
  68. Kurbah, I. (2016): Integrated Nutrient Management for Food Security and Environmental Quality. International Journal of Advanced Research, 4(10), 120–126. http://dx.doi.org/10.21474/IJAR01/1767
  69. Lamlom, S.F.; Abdelghany, A.M.; Ren, H.; Ali, H.M.; Usman, M.; Shaghaleh, H.; Hamoud, Y.A.; El-Sorady, G.A. (2024): Revitalizing maize growth and yield in water-limited environments through silicon and zinc foliar applications. Heliyon, 10(15), e35118. https://doi.org/10.1016/j.heliyon.2024.e35118
  70. Lawrence, P.G.; Roper, W.; Morris, T.F.; Guillard, K. (2020): Guiding soil sampling strategies using classical and spatial statistics: A review. Agronomy Journal, 112(1), 493-510. https://doi.org/10.1002/agj2.20048
  71. Lebu, S.; Lee, A.; Salzberg, A.; Bauza, V. (2024): Adaptive strategies to enhance water security and resilience in low- and middle-income countries: A critical review. Science of The Total Environment, 925, 171520. https://doi.org/10.1016/j.scitotenv.2024.171520
  72. Li, Y.; Huang, S.; Meng, Q.; Li, Z.; Fritschi, F.B.; Wang, P. (2024): Pre-silking water deficit in maize induced kernel loss through impaired silk growth and ovary carbohydrate dynamics. Plant-Environment Interactions, 5(2). https://doi.org/10.1002/pei3.10141
  73. Li, W.; Gu, X.; Du, Y.; Zheng, X.; Lu, S.; Cheng, Z.; Cai, W.; Chang, T. (2023): Optimising nitrogen, phosphorus, and potassium fertilisation regimes to improve maize productivity under double ridge-furrow planting with full film mulching. Agricultural Water Management, 287, 108439. https://doi.org/10.1016/j.agwat.2023.108439
  74. Lippold, E.; Lucas, M.; Fahrenkampf, T.; Schlüter, S.; Vetterlein, D. (2022): Macroaggregates of loam in sandy soil show little influence on maize growth, due to local adaptations of root architecture to soil heterogeneity. Plant and Soil, 478, 163–175. https://doi.org/10.1007/s11104-022-05413-5
  75. Liu, Y.; Yang, H.; Li, J.; Li, Y.; Yan, H. (2018): Estimation of irrigation requirements for drip-irrigated maize in a subhumid climate. Journal of Integrative Agriculture, 17(3), 677–692. http://dx.doi.org/10.1016/S2095-3119(17)61833-1
  76. Louw, A.S.; Chen, X.; Avtar, R. (2024): Assessing the accuracy of an infrared-converted drone camera with Orange-Cyan-NIR filter for vegetation and environmental monitoring. Remote Sensing Applications: Society and Environment, 35, 101229. https://doi.org/10.1016/j.rsase.2024.101229
  77. Lv, X.; Ding, Y.; Long, M.; Liang, W.; Gu, X.; Liu, Y.; Wen, X. (2021): Effect of foliar application of various nitrogen forms on starch accumulation and grain filling of wheat (Triticum aestivum L.) under drought stress. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.645379
  78. MacCarthy, D.S.; Adamtey, N.; Freduah, B.S.; Fosu-Mensah, B.Y.; Ofosu-Budu, G.K.; Fliessbach, A. (2023): Modeling the effect of soil fertility management options on maize yield stability under variable climate in a sub-humid zone in Ghana. Frontiers of Sustainable Food Systems, 7, 1132732. https://doi.org/10.3389/fsufs.2023.1132732
  79. Maresma, A.; Ballesta, A.; Santiveri, F.; Lloveras, J. (2019): Sowing Date Affects Maize Development and Yield in Irrigated Mediterranean Environments. Agriculture, 9(3), 67. https://doi.org/10.3390/agriculture9030067
  80. Maynard, J.J.; Yeboah, E.; Owusu, S.; Buenemann, M.; Neff, J.C.; Herrick, J.E. (2023): Accuracy of regional-to-global soil maps for on-farm decision-making: are soil maps “good enough”? Soil, 9, 277–300. https://doi.org/10.5194/soil-9-277-2023
  81. McBratney, A.B.; Hartemink, A.E. (2024): Define soil. Soil Security, 14, 100135. https://doi.org/10.1016/j.soisec.2024.100135
  82. Mgendi, G. (2024): Unlocking the potential of precision agriculture for sustainable farming. Discover Agriculture, 2(87). https://doi.org/10.1007/s44279-024-00078-3
  83. Mhlanga, B.; Pellegrino, E.; Thierfelder, C.; Ercoli, L. (2022): Conservation agriculture practices drive maize yield by regulating soil nutrient availability, arbuscular mycorrhizas, and plant nutrient uptake. Field Crops Research, 277, 108403. https://doi.org/10.1016/j.fcr.2021.108403
  84. Nadeem, F.; Farooq, M. (2019): Application of Micronutrients in Rice-Wheat Cropping System of South Asia. Rice Science, 26(6), 356–371. https://doi.org/10.1016/j.rsci.2019.02.002
  85. Njoroge, R.; Otinga, A.N.; Okalebo, J.R.; Pepela, M.; Merckx, R. (2018): Maize (Zea mays L.) Response to Secondary and Micronutrients for Profitable N, P and K Fertilizer Use in Poorly Responsive Soils. Agronomy, 8(4), 49. https://doi.org/10.3390/agronomy8040049
  86. Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Müller, T. (2016): Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Research, 196, 389–401. https://doi.org/10.1016/j.fcr.2016.07.018
  87. Noulas, C.; Torabian, S.; Qin, R. (2023): Crop Nutrient Requirements and Advanced Fertilizer Management Strategies. Agronomy, 13(8), 2017. https://doi.org/10.3390/agronomy13082017
  88. Pasley, H.R.; Cairns, J.E.; Camberato, J.J.; Vyn, T.J. (2019): Nitrogen fertilizer rate increases plant uptake and soil availability of essential nutrients in continuous maize production in Kenya and Zimbabwe. Nutrient Cycling in Agroecosystems, 115, 373–389. https://doi.org/10.1007/s10705-019-10016-1
  89. Peña-Barragán, J.M.; Torres-Sánchez, J.; De Castro, A.I.; López-Granados, F.; Dorado, J. (2014): The TOAS Project: UAV technology for optimizing herbicide applications in weed-crop systems. 12th International Conference on Precision Agriculture, 1–13. http://hdl.handle.net/10261/155850
  90. Prajisha, C.K.; Achu, A.L.; Joseph, S. (2023): Chapter 9 - Landslide susceptibility modeling using a generalized linear model in a tropical river basin of the Southern Western Ghats, India. Water, Land, and Forest Susceptibility and Sustainability, 1, 237–266. https://doi.org/10.1016/B978-0-323-91880-0.00004-0
  91. Quemada, M.; Gabriel, J.L. (2016): Approaches for increasing nitrogen and water use efficiency simultaneously. Global Food Security, 9, 29–35. http://dx.doi.org/10.1016/j.gfs.2016.05.004
  92. Raniro, H.R.; Oliveira, F.; Araujo, J.O.; Christoffoleti, P.J. (2023): Broadcast nitrogen application can negatively affect maize leaf area index and grain yield components under weed competition. Farming System, 1(3), 100047. https://doi.org/10.1016/j.farsys.2023.100047
  93. Ray, K.; Banerjee, H.; Dutta, S.; Sarkar, S.; Murrell, T.S.; Singh, V.K.; Majumdar, K. (2020) Macronutrient Management Effects on Nutrient Accumulation, Partitioning, Remobilization, and Yield of Hybrid Maize Cultivars. Front. Plant Sci. 11:1307
  94. Razaq, M.; Zhang, P.; Shen, H.; Salahuddin (2017): Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS One, 12(2). https://doi.org/10.1371/journal.pone.0171321
  95. Rerkasem, B.; Jamjod, S.; Pusadee, T. (2020): Productivity limiting impacts of boron deficiency, a review. Plant and Soil, 455, 23–40. https://doi.org/10.1007/s11104-020-04676-0
  96. Sadeghi, S.; Petermann, B.J.; Steffan, J.J.; Brevik, E.C.; Gedeon, C. (2023): Predicting microbial responses to changes in soil physical and chemical properties under different land management. Applied Soil Ecology, 188, 104878. https://doi.org/10.1016/j.apsoil.2023.104878
  97. Sainju, U.M.; Liptzin, D. (2022): Relating soil chemical properties to other soil properties and dryland crop production. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.1005114
  98. Shanmugavel, D.; Rusyn, I.; Solorza-Feria, O.; Kamaraj, S.K. (2023): Sustainable SMART fertilizers in agriculture systems: A review on fundamentals to in-field applications. Science of The Total Environment, 904, 166729. https://doi.org/10.1016/j.scitotenv.2023.166729
  99. Șimon, A.; Moraru, P.I.; Ceclan, A.; Russu, F.; Chețan, F.; Bărdaș, M.; Popa, A.; Rusu, T.; Pop, A.I.; Bogdan, I. (2023): The Impact of Climatic Factors on the Development Stages of Maize Crop in the Transylvanian Plain. Agronomy, 13(6), 1612. https://doi.org/10.3390/agronomy13061612
  100. Singh, V.K.; Gautam, P.; Nanda, G.; Dhaliwal, S.S.; Pramanick, B.; Meena, S.S.; Alsanie, W.F.; Gaber, A.; Sayed, S.; Hossain, A. (2021): Soil Test Based Fertilizer Application Improves Productivity, Profitability and Nutrient Use Efficiency of Rice (Oryza sativa L.) under Direct Seeded Condition. Agronomy, 11(9), 1756. https://doi.org/10.3390/agronomy11091756
  101. Sparks, D.L.; Singh, B.; Siebecker, M.G. (2024): The Chemistry of Soil Acidity. Environmental Soil Chemistry (Third Edition), 381–410. https://doi.org/10.1016/B978-0-443-14034-1.00009-5
  102. Stadler, A.; Rudolph, S.; Kupisch, M.; Langensiepen, M.; van der Kruk, J.; Ewert, F. (2015): Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements. European Journal of Agronomy, 64, 8–20. https://doi.org/10.1016/j.eja.2014.12.004
  103. Stewart, Z.P.; Paparozzi, E.T.; Wortmann, C.S.; Jha, P.K.; Shapiro, C.A. (2021): Effect of Foliar Micronutrients (B, Mn, Fe, Zn) on Maize Grain Yield, Micronutrient Recovery, Uptake, and Partitioning. Plants, 10, 528. https://doi.org/ 10.3390/plants10030528
  104. Strawn, D.G. (2021): Sorption Mechanisms of Chemicals in Soils. Soil Systems, 5(1), 13. https://doi.org/10.3390/soilsystems5010013
  105. ten Berge, H.F.M.; Hijbeek, R.; van Loon, M.P.; Rurinda, J.; Tesfaye, K.; Zingore, S.; Craufurd, P.; van Heerwaarden, J.; Brentrup, F.; Schröder, J.J.; Boogaard, H.L.; de Groot, H.L.E.; van Ittersum, M.K.; Maize crop nutrient input requirements for food security in sub-Saharan Africa. Global Food Security, 23, 9–21. https://doi.org/10.1016/j.gfs.2019.02.001
  106. Thompson, M.E. H.; Shrestha, A.; Rinne, J.; Limay-Rios, V.; Reid, L.; Raizada, M.N. (2023): The Cultured Microbiome of Pollinated Maize Silks Shifts after Infection with Fusarium graminearum and Varies by Distance from the Site of Pathogen Inoculation. Pathogens, 12(11), 1322. https://doi.org/10.3390/pathogens12111322
  107. Toureiro, C.; Serralheiro, R.P.; Shahidian, S.; Sousa, A. (2016): Irrigation management with remote sensing: application to maize crop in a Mediterranean condition. Agricultural Water Management, 184(1). http://dx.doi.org/10.1016/j.agwat.2016.02.010
  108. ulShahid, Z.; Ali, M.; Shahzad, K.; Danish, S.; Alharbi, S.A.; Ansari, M.J. (2023): Enhancing maize productivity by mitigating alkaline soil challenges through acidified biochar and wastewater irrigation. Scientific Reports, 13(20800). https://doi.org/10.1038/s41598-023-48163-9
  109. Uwizeyimana, D.; Mureithi, S.M.; Karuku, G.; Kironchi, G. (2018): Effect of water conservation measures on soil moisture and maize yield under drought prone agro-ecological zones in Rwanda. International Soil and Water Conservation Research, 6(3), 214–221. https://doi.org/10.1016/j.iswcr.2018.03.002
  110. Wacoo, A.P.; Wendiro, D.; Vuzi, P.C.; Hawumba, J.F. (2014): Methods for Detection of Aflatoxins in Agricultural Food Crops. Journal of Applied Chemistry, 1–15. https://doi.org/10.1155/2014/706291
  111. Wakwoya, M.B.; Woldeyohannis, W.H.; Yimamu, F.K. (2022): Effects of minimum tillage and liming on maize (Zea mays L.) yield components and selected properties of acid soils in Assosa Zone, West Ethiopia. Journal of Agriculture and Food Research, 8, 100301. https://doi.org/10.1016/j.jafr.2022.100301
  112. Wang, E.; Cruse, R.M.; Zhao, Y.; Chen, X. (2015): Quantifying soil physical condition based on soil solid, liquid and gaseous phases. Soil and Tillage Research, 146A, 4–9. https://doi.org/10.1016/j.still.2014.09.018
  113. Wang, L.; Rengel, Z.; Cheng, L.; Shen, J. (2024): Coupling phosphate type and placement promotes maize growth and phosphorus uptake by altering root properties and rhizosphere processes. Field Crops Research, 306, 109225. https://doi.org/10.1016/j.fcr.2023.109225
  114. Wen-xuan, S.; Qian, Z.; Lan-tao, L.; Jin-fang, T.; Ruo-han, X.; Yi-lun, W. (2023): Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation. Journal of Integrative Agriculture, 22(4), 1184–1198. https://doi.org/10.1016/j.jia.2022.09.018
  115. Wu, P.; Liu, F.; Chen, G.; Wang, J.; Huang, F.; Cai, T.; Zhang, P.; Jia, Z. (2022): Can deep fertilizer application enhance maize productivity by delaying leaf senescence and decreasing nitrate residue levels? Field Crops Research, 77, 108417. https://doi.org/10.1016/j.fcr.2021.108417
  116. Xing, Y.; Wang, X. (2024): Precision Agriculture and Water Conservation Strategies for Sustainable Crop Production in Arid Regions. Plants, 13(22), 3184. https://doi.org/10.3390/plants13223184
  117. Xu, M.; Cardenas, L.M.; Horrocks, C.; López-Aizpún, M.; Zhang, J.; Zhang, F.; Dungait, J.A.J. (2021): The effect of tillage management on microbial functions in a maize crop at different slope positions. Geoderma, 401, 115171. https://doi.org/10.1016/j.geoderma.2021.115171
  118. Yahaya, S.M.; Mahmud, A.A.; Abdullahi, M.; Haruna, A. (2023): Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: A review. Pedosphere, 33(3), 385–406. https://doi.org/10.1016/j.pedsph.2022.07.012
  119. Yan, S.; Wu, Y.; Fan, J.; Zhang, F.; Guo, J.; Zheng, J.; Wu, L. (2022): Quantifying grain yield, protein, nutrient uptake and utilization of winter wheat under various drip fertigation regimes. Agricultural Water Management, 261, 107380. https://doi.org/10.1016/j.agwat.2021.107380
  120. Yao, Y.; Yue, J.; Liu, Y.; Yang, H.; Feng, H.; Shen, J.; Hu, J.; Liu, Q. (2024). Classification of Maize Growth Stages Based on Phenotypic Traits and UAV Remote Sensing. Agriculture, 14(7), 1175. https://doi.org/10.3390/agriculture14071175
  121. Zerssa, G.W.; Kim, D.G.; Koal, P.; Löbermann, B.E. (2021): Combination of Compost and Mineral Fertilizers as an Option for Enhancing Maize (Zea mays L.) Yields and Mitigating Greenhouse Gas Emissions from a Nitisol in Ethiopia. Agronomy, 11(11), 2097. https://doi.org/10.3390/agronomy11112097
  122. Zhang, D.; Zhao, H.; Shi, L.; Xu, F. (2014): Physiological and genetic responses to boron deficiency in Brassica napus: A review. Soil Science and Plant Nutrition, 60(3), 304-313. https://doi.org/10.1080/00380768.2014.893537
  123. Zhang, Z.; Yu, Z.; Zhang, Y.; Shi, Y. (2022): Impacts of fertilisation optimisation on soil nitrogen cycling and wheat nitrogen utilisation under water-saving irrigation. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.878424
  124. Zhang, W.; Xiong, Y.; Li, Y.; Qiu, Y.; Huang, G. (2022): Effects of organic amendment incorporation on maize (Zea mays L.) growth, yield and water-fertilizer productivity under arid conditions. Agricultural Water Management, 269, 107663. https://doi.org/10.1016/j.agwat.2022.107663
  125. Zhang, X.; Feng, G.; Sun, X. (2024): Advanced technologies of soil moisture monitoring in precision agriculture: A Review. Journal of Agriculture and Food Research, 18, 101473. https://doi.org/10.1016/j.jafr.2024.101473
  126. Zhao, J.; Qi, Y.; Yin, C.; Liu, X. (2024): Effects of Nitrogen Reduction at Different Growth Stages on Maize Water and Nitrogen Utilisation under Shallow Buried Drip Fertigated Irrigation. Agronomy, 14(1), 63. https://doi.org/10.3390/agronomy14010063
  127. Zong, M.; Manevski, K.; Liang, Z.; Abalos, D.; Jabloun, M.; Lærke, P.E.; Jørgensen, U. (2024): Diversifying maize rotation with other industrial crops improves biomass yield and nitrogen uptake while showing variable effects on nitrate leaching. Agriculture, Ecosystems and Environment, 371, 109091. https://doi.org/10.1016/j.agee.2024.109091