Articles

Dynamics of alfalfa production in Hungary: Changes in harvested area, yield, and total production over 30 years (1990 – 2024)

Published:
2025-06-08
Authors
View
Keywords
License

Copyright (c) 2025 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Appiah, E. A., Kuunya, R., & Kutasy, E. T. (2025). Dynamics of alfalfa production in Hungary: Changes in harvested area, yield, and total production over 30 years (1990 – 2024). Acta Agraria Debreceniensis, 1, 163-169. https://doi.org/10.34101/actaagrar/1/15559
Received 2025-03-24
Accepted 2025-06-10
Published 2025-06-08
Abstract

Alfalfa is a crucial forage crop in Hungary, contributing to sustaining livestock feed and soil fertility management. To assess the dynamics of alfalfa crop production in the country, this study examines the variations and patterns in harvested area, total production, arable land area, and average yield of alfalfa over the previous three decades (1990 to 2024). Our findings reveal fluctuating patterns, with periods of increase and decrease in all parameters under study. While certain years exhibit growth due to favourable climatic conditions and improved agricultural practices, others show declines, potentially influenced by economic factors, changes in crop demand due to a decline in livestock production, and unfavourable climatic conditions, particularly drought. The analysis highlights the complication of alfalfa production trends, underscoring the need for expanding land area and adaptive strategies in Hungarian forage crop management to enhance alfalfa crop production to sustain livestock’s feeding system.

References
  1. Agho, C.; Avni, A.; Bacu, A.; Bakery, A.; Balazadeh, S.; Baloch, F.S.; Bazakos, C.; Čereković, N.; Chaturvedi, P.; Chauhan, H.; Smet, I.D.; Dresselhaus, T.; Ferreira, L.; Fíla, J.; Fortes, A.M.; Fotopoulos, V.; Francesca, S.; García-Perez, P.; Gong, W.; Graci, S.; Fragkostefanakis, S. (2024): Integrative approaches to enhance reproductive resilience of crops for climate-proof agriculture. Plant Stress: 108541. https://doi.org/10.1016/j.stress.2024.100704
  2. Appiah, E.A.; Balla-Kovács, A.; Ocwa, A.; Csajbók, J.; Kutasy, E. (2024): Enhancing Alfalfa (Medicago sativa L.) Productivity: Exploring the Significance of Potassium Nutrition. Agronomy, 14(8), 1806. https://doi.org/10.3390/agronomy14081806
  3. Bakucs, Z.; Fertő, I.; Varga, A.; Benedek, Z. (2018): Impact of European Union development subsidies on Hungarian regions. European Planning Studies, 26(6):1121–1136. https://Doi.Org/10.1080/09654313.2018.1437394
  4. Balogh, P.; Bai, A.; Czibere, I.; Kovách, I.; Fodor, L.; Bujdos, Á.; Sulyok, D.; Gabnai, Z.; Birkner, Z. (2021): Economic and Social Barriers of Precision Farming in Hungary. Agronomy, 11:1112. https:// doi.org/10.3390/agronomy11061112
  5. Baral, R.; Lollato, R.P.; Bhandari, K.; Min, D. (2022). Yield gap analysis of rainfed alfalfa in the United States. Frontiers in plant science, 13, 931403. doi: 10.3389/fpls.2022.931403
  6. Biró, K.; Toldi, O. (2022): Hungarian agricultural pathways revealing climate-related challenges. Cognitive Sustainability, 1:4. https://doi.org/10.55343/CogSust.28
  7. Del Portillo, D.G.; Arroyo, B.; Morales, M.B. (2022): The adequacy of alfalfa crops as an agri-environmental scheme: A review of agronomic benefits and effects on biodiversity. Journal for Nature Conservation, 69, 126253. https://doi.org/10.1016/j.jnc.2022.126253
  8. El Moussaoui, H.; Idardare, Z.; Bouqbis L. (2024): Effect of integrated soil fertility management on water retention, productivity and physiological parameters of Alfalfa (Medicago sativa) without and under deficit irrigation. Scientia Horticulturae, 327:112816. https://doi.org/10.1016/j.scienta.2023.112816
  9. El-Ramady, H.; Neama, A.; Szivilia, K.; Szabolcsy, E.D.; Bákonyi, N.; Fari, M.; Geilfus, C.M. (2020): Alfalfa Growth under Changing Environments: An Overview. Journal of Environment, Biodiversity and Soil Security, 4:201–224. https://doi.org/10.21608/jenvbs.2020.37746.1101
  10. Erdős, A.D.; Szőllősi L. (2022): Economic situation and concentration of arable crop partnerships in Hungary. Journal of Central European Agriculture, 23(1):179–191. https://doi.org/10.5513/JCEA01/23.1.3278
  11. Evenson, P.D. (1979): Optimum crown temperatures for maximum alfalfa growth 1. Agronomy Journal, 71(5), 798–800.
  12. Farkas, J.Z.; Kőszegi, I.R.; Hoyk, E.; Szalai, Á. (2023): Challenges and Future Visions of the Hungarian Livestock Sector from a Rural Development Viewpoint. Agriculture, 13(6), 1206. https://doi.org/10.3390/agriculture13061206
  13. Fink, K.P. (2021): Benchmarking alfalfa water use efficiency and quantifying yield gaps in the US central Great Plains (Doctoral dissertation).
  14. Food and Agriculture Organisation of the United Nations (2018): The future of food and agriculture – Alternative pathways to 2050. pp. 1–224, Licence: CC BY-NC-SA 3.0 IGO, Rome - Italy.
  15. Ji, Z.; Shi, Y.; Jiang, L.; Wang, X.; Zhu, G.; Zhou G. (2025): Double-Cropping Systems Based on Maize, Sorghum, and Alfalfa: Impact of Annual Combination on Biomass and Nutritional Yield. Agronomy, 15(1):83. https://doi.org/10.3390/agronomy15010083
  16. Kovács, E.K. (2015): Surveillance and state-making through EU agricultural policy in Hungary. Geoforum, 64:168–181. https://doi.org/10.1016/j.geoforum.2015.06.020
  17. KSH (2024): First release performance of agriculture, 2024 (first estimate). https://www.ksh.hu/en/first-releases/mgt/emgt24.html
  18. Laczka, E.; Soós L. (2003): Some Characteristics of the Hungarian Agriculture in the 1990s. Hungarian Statistical Review, Special number, 8
  19. Ladha, J.K.; Peoples, M.B.; Reddy, P.M.; Biswas, J.C.; Bennett, A.; Jat, M.L.; Krupnik, T.J. (2022): Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. Field Crops Research, 283:108541. https://doi.org/10.1016/j.fcr.2022.108541
  20. Láng, I.; Csete, L.; Jolánkai, M. (2007): Global climate change: domestic effects and responses. The VAHAVA report. Szaktudás Publishing House, Budapest, 2007.
  21. Latif, A.; Sun, Y.; Noman, A. (2023): Herbaceous Alfalfa plant as a multipurpose crop and predominant forage specie in Pakistan. Frontiers in Sustainable Food Systems, 7:1126151. https://doi.org/10.3389/fsufs.2023.1126151
  22. Lennert, J.; Farkas, J.Z. (2020): Transformation of agriculture in Hungary in the period 1990–2020. Studia Obszarów Wiejskich, 56:33–72. https://doi.org/10.7163/SOW.56.2
  23. Pourshirazi, S.; Soltani, A.; Zeinali, E. (2022): Assessing the sensitivity of alfalfa yield potential to climate impact under future scenarios in Iran. Environ Sci Pollut Res 29, 61093–61106 https://doi.org/10.1007/s11356-022-20287-x
  24. Raven, P.H.; Wagner, D.L. (2021). Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences, 118(2), e2002548117. doi.org/10.1073/pnas.2002548117
  25. Ren, L.; Bennett, J.A.; Coulman, B.; Liu, J.; Biligetu B. (2021): Forage yield trend of alfalfa cultivars in the Canadian prairies and its relation to environmental factors and harvest management. Grass and Forage Science, 76:390–399. https://doi.org/10.1111/gfs.12513
  26. Ren, L.; Bennett, J.A.; Coulman, B.; Liu, J.; Biligetu, B. (2021). Forage yield trend of alfalfa cultivars in the Canadian prairies and its relation to environmental factors and harvest management. Grass and forage science, 76(3), 390–399. doi.org/10.1111/gfs.12513
  27. Süle, B.; Kalocsai, R.; Gombkötő, N. (2024): Status of Agricultural Irrigation in Hungary. BIO Web of Conferences, 125:01001. https://doi.org/10.1051/bioconf/202412501001
  28. Terres, J.M.; Scacchiafichi, L.N.; Wania, A.; Ambar, M.; Anguiano, E.; Buckwell, A.; Zobena, A. (2015): Farmland abandonment in Europe: Identification of drivers and indicators, and development of a composite indicator of risk. Land use policy, 49, 20–34.
  29. Thivierge, M.N.; Jégo, G.; Bélanger, G.; Bertrand, A.; Tremblay, G. F.; Rotz, C.A.; Qian, B. (2016): Predicted yield and nutritive value of an alfalfa–timothy mixture under climate change and elevated atmospheric carbon dioxide. Agronomy Journal, 108(2), 585–603. doi.org/10.2134/agronj2015.0484
  30. Van der Zanden, E.H.; Verburg, P.H.; Schulp, C.J.; Verkerk, P.J. (2017): Trade-offs of European agricultural abandonment. Land use policy, 62, 290–301.
  31. Várhidi, Z.; Máté, M.; Ózsvári L. (2022): The use of probiotics in nutrition and herd health management in large Hungarian dairy cattle farms. Frontiers in Veterinary Science, 9:957935. https://doi.org/10.3389/fvets.2022.957935
  32. Vityi, A. (2014): Initial Stakeholder Meeting Report–Alley Cropping Systems in Hungary.
  33. Wang, P.; Zhang C.; Pan, D.; Xia, H.; Wang, Y.; Sun, J.; Jiang, T.; Sun, G.; Huang, J. (2024): The effects of alfalfa powder combined with health education on patients with dyslipidemia: A randomized controlled trial. Journal of Functional Foods, 121: 106445. https://doi.org/10.1016/j.jff.2024.106445