Soil moisture sensors for sustainable water management in field crop production: A review of advances and application challenges
Authors
View
Keywords
License
Copyright (c) 2025 by the Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How To Cite
Accepted 2025-11-03
Published 2025-12-02
Abstract
Efficient water management is essential for sustainable production of field crops amid climate change, population growth, and water scarcity. Traditional irrigation practices often lead to water use inefficiency, which harms soil health and reduces yields. To address this, reviewing previous studies on soil moisture sensors provides important context and guidance. Literature from Scopus, Google Scholar, and WoS (2019–2025) on soil moisture sensors for sustainable water management in field crops was screened. Out of 244 retrieved publications, 79 met the inclusion criteria with a focus on sensor technologies, applications, advances, and challenges, analysed thematically for research gaps and insights. Based on the findings, soil moisture sensors boost water management, improve yields of field crops, and support sustainable agriculture. However, hindrances related to high costs, lack of awareness, technical complexity, calibration needs, energy challenges, data interpretation difficulties, and compatibility problems hinder effective soil moisture sensor results. Integrating soil moisture sensors with decision-support tools optimises water use and protects soil health to promote long-term productivity under climate variability. Future research should strategise on the development of low-cost, reliable soil moisture sensors with technology subsidies, training, policy support, durability, integration, and simple data to empower farmers to adopt precision water management.
References
- Aarif, M.K.O.; Alam, A.; Hotak, Y. (2025): Smart Sensor Technologies Shaping the Future of Precision Agriculture: Recent Advances and Future Outlooks. Journal of Sensors, 1–26. https://doi.org/10.1155/js/2460098
- Abdelhamid, M.A.; Abdelkader, T.K.; Sayed, H.A.A.; Zhang, Z.; Zhao, X.; Atia, M.F. (2025): Design and evaluation of a solar powered smart irrigation system for sustainable urban agriculture. Scientific Reports, 15, 11761. https://doi.org/10.1038/s41598-025-94251-3
- Abdelmoneim, A.A.; Al Kalaany, C.M.; Dragonetti, G.; Derardja, B.; Khadra, R. (2025): Comparative analysis of soil moisture-and weather-based irrigation scheduling for drip-irrigated lettuce using low-cost Internet of Things capacitive sensors. Sensors, 25(5), 1568. https://doi.org/10.3390/s25051568
- Abdinoor, J.A.; Hashim, Z.K.; Horváth, B.; Zsebő, S.; Stencinger, D.; Hegedüs, G.; Bede, L.; Ijaz, A.; Kulmány, I.M. (2025): Performance of Low-Cost Air Temperature Sensors and Applied Calibration Techniques—A Systematic Review. Atmosphere, 16(7), 842. https://doi.org/10.3390/atmos16070842
- Abebe, F.; Zuo, A.; Ann Wheeler, S.; Bjornlund, H.; van Rooyen, A.; Pittock, J.; Mdemu, M.; Chilundo, M. (2020): Irrigators’ willingness to pay for the adoption of soil moisture monitoring tools in South-Eastern Africa. International Journal of Water Resources Development, 36(sup1), S246–S267. https://doi.org/10.1080/07900627.2020.1755956
- Adla, S.; Bruckmaier, F.; Arias-Rodriguez, L.F.; Tripathi, S.; Pande, S.; Disse, M. (2024): Impact of calibrating a low-cost capacitance-based soil moisture sensor on AquaCrop model performance. Journal of environmental management, 353, 120248. https://doi.org/10.1016/j.jenvman.2024.120248
- Adla, S.; Rai, N.K.; Karumanchi, S.H.; Tripathi, S.; Disse, M.; Pande, S. (2020): Laboratory calibration and performance evaluation of low-cost capacitive and very low-cost resistive soil moisture sensors. Sensors, 20(2), 363. https://doi.org/10.3390/s20020363
- Autio, A.; Johansson, T.; Motaroki, L.; Minoia, P.; Pellikka, P. (2021): Constraints for adopting climate-smart agricultural practices among smallholder farmers in Southeast Kenya. Agricultural Systems, 194, 103284. https://doi.org/10.1016/j.agsy.2021.103284
- Bagada, P.J.; Damor, P.A.; Patel, R.J.; Patel, K.C.; Patel, D.J.; Parmar, H.V.; Rank, P.H.; Vekariya, P.B. (2025): Enhancing Soil Moisture Sensors for Optimised Agricultural Water Management: A Comprehensive Review. Plant Archives, 25, 879–888. https://doi.org/10.51470/PLANTARCHIVES.2025.v25.SP.ICTPAIRS-126
- Balasooriya, T.N.; Mantri, P.; Suriyampola, P. (2020): IoT-based smart watering system towards improving the efficiency of agricultural irrigation. In 2020 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT), 1–7. https://doi.org/10.1109/GCAIoT51063.2020.9345902
- Baylakoğlu, İ.; Fortier, A.; Kyeong, S.; Ambat, R.; Conseil-Gudla, H.; Azarian, M.H.; Pecht, M.G. (2021): The detrimental effects of water on electronic devices. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 1, 100016. https://doi.org/10.1016/j.prime.2021.100016
- Béni, Á.; Juhász, E.; Ragán, P.; Rátonyi, T.; Várbíró, G.; Fekete, I. (2021). Development of soil organic matter measurement system. Soil & Water Research, 16(3).
- Biró, K.; Kovács, E. (2024): Agro-climatic Analysis for Agricultural Adaptation in Hungary. Periodica Polytechnica Social and Management Sciences, 32(2), 141–147. https://doi.org/10.3311/PPso.22482
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. (2022): Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture, 12(10), 1745. https://doi.org/10.3390/agriculture12101745
- Dong, Y.; Miller, S.; Kelley, L. (2020): Performance Evaluation of Soil Moisture Sensors in Coarse- and Fine-Textured Michigan Agricultural Soils. Agriculture, 10(12), 598. https://doi.org/10.3390/agriculture10120598
- El-Naggar, A.G.; Hedley, C.B.; Horne, D.; Roudier, P.; Clothier, B.E. (2020): Soil sensing technology improves application of irrigation water. Agricultural Water Management, 228, 105901. https://doi.org/10.1016/j.agwat.2019.105901
- Ewald, H.; Klerings, I.; Wagner, G.; Heise, T.L.; Stratil, J.M.; Lhachimi, S.K.; Hemkens, L.G.; Gartlehner, G.; Armijo-Olivo, S.; Nussbaumer-Streit, B. (2022). Searching two or more databases decreased the risk of missing relevant studies: a metaresearch study. Journal of clinical epidemiology, 149, 154–164. https://doi.org/10.1016/j.jclinepi.2022.05.022
- Eze, V.H.U.; Eze, E.C.; Alaneme, G.U.; Bubu, P.E.; Nnadi, E.O.E.; Okon, M.B. (2025): Integrating IoT sensors and machine learning for sustainable precision agroecology: enhancing crop resilience and resource efficiency through data-driven strategies, challenges, and future prospects. Discover Agriculture, 3(1), 83. https://doi.org/10.1007/s44279-025-00247-y
- Faqir, Y.; Qayoom, A.; Erasmus, E.; Schutte-Smith, M.; Visser, H.G. (2024): A review on the application of advanced soil and plant sensors in the agriculture sector. Computers and Electronics in Agriculture, 226, 109385. https://doi.org/10.1016/j.compag.2024.109385
- Faridah, S.N.; Sapsal, M.T.; Jamaluddin, T.A.A.; Dani Achmad, A.; Surya, M.A. (2025): Stability of soil moisture sensors for agricultural crop cultivation. Research in Agricultural Engineering, 71(2), 88–94. https://doi.org/10.17221/33/2024-RAE
- Firoozi, A.A.; Firoozi, A.A. (2024): Water erosion processes: Mechanisms, impact, and management strategies. Results in Engineering, 24, 103237. https://doi.org/10.1016/j.rineng.2024.103237
- Food and Agriculture Organisation of the United Nations (2015): The State of Food and Agriculture. Social protection and agriculture: breaking the cycle of rural poverty. FAO. https://www.fao.org/3/a-i4910e.pdf
- Food and Agriculture Organisation of the United Nations (2019): The State of Food and Agriculture. Moving forward on food loss and waste reduction. FAO. https://creativecommons.org/licenses/by-nc-sa/3.0/igo
- Food and Agriculture Organisation of the United Nations (2020): The State of Food and Agriculture. Overcoming water challenges in Agriculture. FAO. https://doi.org/10.4060/cb1447en
- Food and Agriculture Organisation of the United Nations (2021): The State of Food and Agriculture. Making agrifood systems more resilient to shocks and stresses. FAO. https://www.fao.org/3/cb4476en/cb4476en.pdf
- Food and Agriculture Organisation of the United Nations (2022). Statistical Yearbook: World Food and Agriculture. FAO. https://doi.org/10.4060/cc2211en
- Food and Agriculture Organisation of the United Nations (2023): The State of Food and Agriculture. Revealing the true cost of food to transform agrifood systems. FAO. https://doi.org/10.4060/cc7724en
- Food and Agriculture Organisation of the United Nations (2024): The State of Food and Agriculture. Value-driven transformation of agrifood systems. FAO. https://openknowledge.fao.org/handle/20.500.14283/cd2616en
- Getahun, S.; Kefale, H.; Gelaye, Y. (2024): Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review. The Scientific World Journal, 1–12. https://doi.org/10.1155/2024/2126734
- Hamouda, F.; Puig-Sirera, A.; Bonzi, L.; Remorini, D.; Massai, R.; Rallo, G. (2024): Design and validation of a soil moisture-based wireless sensors network for the smart irrigation of a pear orchard. Agricultural Water Management, 305, 109138. https://doi.org/10.1016/j.agwat.2024.109138
- Hardie, M. (2020): Review of novel and emerging proximal soil moisture sensors for use in agriculture. Sensors, 20(23), 6934. https://doi.org/10.3390/s20236934
- Hashemi, S.Z.; Darzi-Naftchali, A.; Karandish, F.; Ritzema, H.; Solaimani, K. (2024): Enhancing agricultural sustainability with water and crop management strategies in modern irrigation and drainage networks. Agricultural Water Management, 305, 109110. https://doi.org/10.1016/j.agwat.2024.109110
- He, H.; Turner, N.C.; Aogu, K.; Dyck, M.; Feng, H.; Si, B.; Wang, J.; Lv, J. (2021): Time and frequency domain reflectometry for the measurement of tree stem water content: A review, evaluation, and future perspectives. Agricultural and Forest Meteorology, 306, 108442. https://doi.org/10.1016/j.agrformet.2021.108442
- Helmy, H.S.; Abuarab, M.E.; Abdeldaym, E.A.; Abdelaziz, S.M.; Abdelbaset, M.M.; Dewedar, O.M.; Molina Martinez, J.M.; El Shafe, A.F.; Mokhtar, A. (2024): Field grown lettuce production optimized through precision irrigation water management using soil moisture based capacitance sensors and biodegradable soil mulching. Irrigation Science. https://doi.org/10.1007/s00271-024-00969-9
- Hernández, J.G.R.; Gracia-Sánchez, J.; Rodríguez-Martínez, T.P.; Zuñiga-Morales, J.A. (2019): Correlation between TDR and FDR Soil Moisture Measurements at Different Scales to Establish Water Availability at the South of the Yucatan Peninsula. IntechOpen. https://doi.org/10.5772/intechopen.81477
- Hiywotu, A.M. (2025): Advancing sustainable agriculture for goal 2: zero hunger – a comprehensive overview of practices, policies, and technologies. Agroecology and Sustainable Food Systems, 1–29. https://doi.org/10.1080/21683565.2025.2451344
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. (2023): Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon, 9(8), e18507. https://doi.org/10.1016/j.heliyon.2023.e18507
- Iqbal, U.; Bakhsh, A.; Shahid, M.A.; Shah, S.H.H.; Ali, S. (2020): Development of Low Cost Indigenized Soil Moisture Sensors for Precision Irrigation. Pakistan Journal of Agricultural Sciences, 57(1). http://dx.doi.org/10.21162/PAKJAS/20.9154
- Jaiswal, N.; Phukan, P.; Ramsem, P.A.; Vyas, D.; Tamgale, G.S.; Verma, A.K.; Singh, G.; Kumari, R.; Ribadiya, N.K.; Singh, J. (2025): Bridging the gap: The role of agricultural extension in knowledge transfer and rural development. Plant Archives, 25(1), 729–740. https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.1.110
- Kakkavou, K.; Gemtou, M.; Fountas, S. (2024): Drivers and barriers to the adoption of precision irrigation technologies in olive and cotton farming—Lessons from Messenia and Thessaly regions in Greece. Smart Agricultural Technology, 7, 100401. https://doi.org/10.1016/j.atech.2024.100401
- Khan, F.U.; Nouman, M.; Negrut, L.; Abban, J.; Cismas, L.M.; Siddiqi, M.F. (2024): Constraints to agricultural finance in underdeveloped and developing countries: a systematic literature review. International Journal of Agricultural Sustainability, 22(1), 2329388. https://doi.org/10.1080/14735903.2024.2329388
- Kishore, S.M.; Renukaswamy, N.S.; Akhil, K.; Venugopala, K.M.; Bharthisha, S.M.; Gururaj, D. (2025): Optimizing water use in agriculture: The role of sensorbased irrigation for sustainable crop production. International Journal of Research in Agronomy, 8(3), 97–101. https://www.doi.org/10.33545/2618060X.2025.v8.i3Sb.2619
- Kulmány, I.M.; Bede-Fazekas, A.; Beslin, A.; Giczi, Z.; Milics, G.; Kovács, B.; Kovács, M.; Ambrus, B.; Bede, L.; Vona, V. (2022): Calibration of an Arduino-based low-cost capacitive soil moisture sensor for smart agriculture. Journal of Hydrology and Hydromechanics, 70(3), 2022, 3, 330–340. http://dx.doi.org/10.2478/johh-2022-0014
- Kumar, S.V.; Singh, C.D.; Rao, K.R.; Rajwade, Y.A.; Kumar, M.; Jawaharlal, D.; Asha, K.R. (2024): IoT-based smart drip irrigation scheduling and wireless monitoring of microclimate in sweet corn crop under plastic mulching. Irrigation Science, 1–20. https://doi.org/10.1007/s00271-024-00945-3
- Kumar, V.; Sharma, K.V.; Kedam, N.; Patel, A.; Kate, T.R.; Rathnayake, U. (2024). A comprehensive review on smart and sustainable agriculture using IoT technologies. Smart Agricultural Technology, 8, 100487. https://doi.org/10.1016/j.atech.2024.100487
- Lakhiar, I.A.; Yan, H.; Zhang, C.; Wang, G.; He, B.; Hao, B.; Han, Y.; Wang, B.; Bao, R.; Syed, T.N.; Chauhdary, J.N.; Rakibuzzaman, M. (2024): A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints. Agriculture, 14(7), 1141. https://doi.org/10.3390/agriculture14071141
- Lankford, B.; Pringle, C.; McCosh, J.; Shabalala, M.; Hess, T.; Knox, J.W. (2023): Irrigation area, efficiency and water storage mediate the drought resilience of irrigated agriculture in a semi-arid catchment. Science of The Total Environment, 859(2), 160263. https://doi.org/10.1016/j.scitotenv.2022.160263
- López-Villanueva, J.A.; Rivadeneyra, A. (2020): Editorial for the special issue on advances in capacitive sensors. Micromachines, 11(11), 993. https://doi.org/10.3390/mi11110993
- Mandal, S.; Yadav, A.; Panme, F.A.; Devi, K.M.; Kumar, S.S.M. (2024): Adaption of smart applications in agriculture to enhance production. Smart agricultural technology, 7, 100431. https://doi.org/10.1016/j.atech.2024.100431
- Mane, S.; Singh, G.; Das, N.N.; Kanungo, A.; Nagpal, N.; Cosh, M.; Dong, Y. (2025): Development of low-cost handheld soil moisture sensor for farmers and citizen scientists. Frontiers in Environmental Science, 13, 1590662. https://doi.org/10.3389/fenvs.2025.1590662
- Mansoor, S.; Iqbal, S.; Popescu, S.M.; Kim, S.L.; Chung, Y.S.; Baek, J.H. (2025): Integration of smart sensors and IOT in precision agriculture: trends, challenges and future prospectives. Frontiers in Plant Science, 16, 1587869. https://doi.org/10.3389/fpls.2025.1587869
- Maraveas, C.; Arvanitis, K.G.; Bartzanas, T.; Loukatos, D. (2025): Potential applications of quantum sensors in agriculture: A review. Computers and Electronics in Agriculture, 235, 110420. https://doi.org/10.1016/j.compag.2025.110420
- Marković, M.; Kočar, M.M.; Barač, Z.; Turalija, A.; Atılgan, A.; Jug, D.; Ravlić, M. (2024): Field Performance Evaluation of Low-Cost Soil Moisture Sensors in Irrigated Orchard. Agriculture, 14(8), 1239. https://doi.org/10.3390/agriculture14081239
- Menne, D.; Hübner, C.; Trebbels, D.; Willenbacher, N. (2022): Robust Soil Water Potential Sensor to Optimize Irrigation in Agriculture. Sensors, 22(12), 4465. https://doi.org/10.3390/s22124465
- Meshram, S.M.M.; Adla, S.; Jourdin, L.; Pande, S. (2024): Review of low-cost, off-grid, biodegradable in situ autonomous soil moisture sensing systems: Is there a perfect solution? Computers and Electronics in Agriculture, 225, 109289. https://doi.org/10.1016/j.compag.2024.109289
- Mgendi, G. (2024): Unlocking the potential of precision agriculture for sustainable farming. Discover Agriculture, 2, 87. https://doi.org/10.1007/s44279-024-00078-3
- Mónok, D.; Kardos, L.; Pabar, S.A.; Kotroczó, Z.; Tóth, E.; Végvári, G. (2021): Comparison of soil properties in urban and non‐urban grasslands in Budapest area. Soil Use and Management, 37(4), 790–801. https://doi.org/10.1111/sum.12632
- Nsoh, B.; Katimbo, A.; Guo, H.; Heeren, D.M.; Nakabuye, H.N.; Qiao, X.; Ge, Y.; Rudnick, D.R.; Wanyama, J.; Bwambale, E.; Kiraga, S. (2024): Internet of Things-Based Automated Solutions Utilizing Machine Learning for Smart and Real-Time Irrigation Management: A Review. Sensors, 24(23), 7480. https://doi.org/10.3390/s24237480
- Pandeya, S.; Gyawali, B.R.; Upadhaya, S. (2025): Factors influencing precision agriculture technology adoption among small-scale farmers in Kentucky and their implications for policy and practice. Agriculture, 15(2), 177. https://doi.org/10.3390/agriculture15020177
- Parra-López, C.; Abdallah, S.B.; Garcia-Garcia, G.; Hassoun, A.; Trollman, H.; Jagtap, S.; Gupta, S.; Aït-Kaddour, A.; Makmuang, S.; Carmona-Torres, C. (2025): Digital technologies for water use and management in agriculture: Recent applications and future outlook. Agricultural Water Management, 309, 109347. https://doi.org/10.1016/j.agwat.2025.109347
- Peranić, J.; Čeh, N.; Arbanas, Z. (2022): The Use of Soil Moisture and Pore-Water Pressure Sensors for the Interpretation of Landslide Behavior in Small-Scale Physical Models. Sensors, 22(19), 7337. https://doi.org/10.3390/s22197337
- Puig, F.; Rodríguez Díaz, J.A.; Soriano, M.A. (2022): Development of a low-cost open-source platform for smart irrigation systems. Agronomy, 12(12), 2909. https://doi.org/10.3390/agronomy12122909
- Qi, Q.; Yang, H.; Zhou, Q.; Han, X.; Jia, Z.; Jiang, Y.; Chen, Z.; Hou, L.; Mei, S. (2024): Performance of soil moisture sensors at different salinity levels: comparative analysis and calibration. Sensors, 24(19), 6323. https://doi.org/10.3390/s24196323
- Rácz, D.; Szőke, L.; Tóth, B.; Kovács, B.; Horváth, É.; Zagyi, P.; Duzs, L.; Széles, A. (2021): Examination of the productivity and physiological responses of maize (Zea mays L.) to nitrapyrin and foliar fertilizer treatments. Plants, 10(11), 2426. https://doi.org/10.3390/plants10112426
- Rajak, P.; Ganguly, A.; Adhikary, S.; Bhattacharya, S. (2023): Internet of Things and smart sensors in agriculture: Scopes and challenges. Journal of Agriculture and Food Research, 14, 100776. https://doi.org/10.1016/j.jafr.2023.100776
- Raji, E.; Ijomah, T.I.; Eyieyien, O.G. (2024): Improving agricultural practices and productivity through extension services and innovative training programs. International Journal of Applied Research in Social Sciences, 6(7), 1297–1309. https://doi.org/10.51594/ijarss.v6i7.1267
- Rasheed, M.W.; Tang, J.; Sarwar, A.; Shah, S.; Saddique, N.; Khan, M.U.; Khan, M.I.; Nawaz, S.; Shamshiri, R.R.; Aziz, M.; Sultan, M. (2022): Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review. Sustainability, 14(18), 11538. https://doi.org/10.3390/su141811538
- Raxbaroy, Y. (2024): Optimizing Irrigation and Soil Moisture Management in Uzbekistan’s Agricultural Sector through Modern Technologies. American Journal of Applied Science and Technology, 4(10), 26–28. https://doi.org/10.37547/ajast/Volume04Issue10-04
- Sahoo, S.R.; Agyeman, B.T.; Debnath, S.; Liu, J. (2022): Knowledge-Based Optimal Irrigation Scheduling of Agro-Hydrological Systems. Sustainability, 14(3), 1304. https://doi.org/10.3390/su14031304
- Schattman, R.E.; Jean, H.; Faulkner, J.W.; Maden, R.; McKeag, L.; Nelson, K.C.; Grubinger, V.; Burnett, S.; Erich, M.S.; Ohno, T. (2023): Effects of irrigation scheduling approaches on soil moisture and vegetable production in the Northeastern U.S.A. Agricultural Water Management, 287, 108428. https://doi.org/10.1016/j.agwat.2023.108428
- Serena, M.; Velasco-Cruz, C.; Friell, J.; Schiavon, M.; Sevostianova, E.; Beck, L.; Sallenave, R.; Leinauer, B. (2020): Irrigation scheduling technologies reduce water use and maintain turfgrass quality. Agronomy Journal, 112(5), 3456–3469. https://doi.org/10.1002/agj2.20246
- Seyar, M.H.; Ahamed, T. (2024): Optimization of soil-based irrigation scheduling through the integration of machine learning, remote sensing, and soil moisture sensor technology. In IoT and AI in Agriculture: Smart Automation Systems for increasing Agricultural Productivity to Achieve SDGs and Society 5.0 (pp. 275–299). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-1263-2_18
- Sharma, K.; Irmak, S.; Kukal, M.S. (2021): Propagation of soil moisture sensing uncertainty into estimation of total soil water, evapotranspiration and irrigation decision-making. Agricultural Water Management, 243, 106454. https://doi.org/10.1016/j.agwat.2020.106454
- Siraparapu, S.R.; Azad, S.M.A.K. (2024): Securing the IoT landscape: A comprehensive review of secure systems in the digital era. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 10, 100798. https://doi.org/10.1016/j.prime.2024.100798
- Somefun, O.T.; Masasi, B.; Adelabu, A.O. (2024): Irrigation and Water Management of Tomatoes – A Review. Journal of Sustainable Agriculture and Environment, 3, e70020. https://doi.org/10.1002/sae2.70020
- Song, J.H.; Her, Y.; Yu, X.; Li, Y.; Smyth, A.; Martens-Habbena, W. (2022): Effect of information-driven irrigation scheduling on water use efficiency, nutrient leaching, greenhouse gas emission, and plant growth in South Florida. Agriculture, Ecosystems & Environment, 333, 107954. https://doi.org/10.1016/j.agee.2022.107954
- Srivastava, R.K.; Purohit, S.; Alam, E.; Islam, M.K. (2024): Advancements in soil management: Optimizing crop production through interdisciplinary approaches. Journal of Agriculture and Food Research, 18, 101528. https://doi.org/10.1016/j.jafr.2024.101528
- Sutanto, S.J.; Paparrizos, S.; Kranjac-Berisavljevic, G.; Jamaldeen, B.M.; Issahaku, A.K.; Gandaa, B.Z.; Supit, I.; van Slobbe, E. (2022): The role of soil moisture information in developing robust climate services for smallholder farmers: Evidence from Ghana. Agronomy, 12(2), 541. https://doi.org/10.3390/agronomy12020541
- Széles, A.; Horváth, E.; Rácz, D.; Dúzs, L.; Bojtor, C.; Huzsvai, L. (2021): Development of stomatal conductance of maize under moderately hot, dry production conditions. Agronomy Research, 19(4), 2013–2025. https://doi.org/10.15159/AR.21.151
- Teweldebrihan, M.D.; Dinka, M.O. (2025): Sustainable Water Management Practices in Agriculture: The Case of East Africa. Encyclopedia, 5(1), 7. https://doi.org/10.3390/encyclopedia5010007
- Thapa, S.; Rudd, J.C.; Xue, Q.; Bhandari, M.; Reddy, S.K.; Jessup, K.E.; Liu, S.; Devkota, R.N.; Baker, J.; Baker, S. (2019): Use of NDVI for characterizing winter wheat response to water stress in a semi-arid environment. Journal of Crop Improvement, 33(5), 633–648. https://doi.org/10.1080/15427528.2019.1648348
- Thilakarathne, N.N.; Bakar, M.S.A.; Abas, P.E.; Yassin, H. (2025): Internet of things enabled smart agriculture: Current status, latest advancements, challenges and countermeasures. Heliyon, 11(3), e42136. https://doi.org/10.1016/j.heliyon.2025.e42136
- Țopa, D.C.; Căpșună, S.; Calistru, A.E.; Ailincăi, C. (2025): Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review. Agriculture; Basel, 15(9). https://doi.org/10.3390/agriculture15090998
- Tornese, I.; Matera, A.; Rashvand, M.; Genovese, F. (2024): Use of probes and sensors in agriculture—current trends and future prospects on intelligent monitoring of soil moisture and nutrients. AgriEngineering, 6(4), 4154–4181. https://doi.org/10.3390/agriengineering6040234
- Torres-Quezada, E.; Fuentes-Peñailillo, F.; Gutter, K.; Rondón, F.; Marmolejos, J.M.; Maurer, W.; Bisono, A. (2025): Remote Sensing and Soil Moisture Sensors for Irrigation Management in Avocado Orchards: A Practical Approach for Water Stress Assessment in Remote Agricultural Areas. Remote Sensing, 17(4), 708. https://doi.org/10.3390/rs17040708
- Trail, S.M.; Ward, F.A. (2024): Uniting agricultural water management, economics, and policy for climate adaptation through a new assessment of water markets for arid regions. Agricultural Water Management, 305, 109101. https://doi.org/10.1016/j.agwat.2024.109101
- Wadoux, A.M.C.; Courteille, L.; Arrouays, D.; Gomes, L.D.C.; Cortet, J.; Creamer, R.E.; Eberhardt, E.; Greve, M.H.; Grüneberg, E.; Harhoff, R.; Heuvelink, G.B.M.; Krahl, I.; Lagacherie, P.; Miko, L.; Mulder, V.L.; Pásztor, L.; Pieper, S.; Richer-de-Forges, A.C.; Sánchez-Rodríguez, A.R.; Rossiter, D.; Wetterlind, J. (2024): On soil districts. Geoderma, 452, 117065. https://doi.org/10.1016/j.geoderma.2024.117065
- Xing, Y.; Wang, X. (2024): Precise application of water and fertilizer to crops: challenges and opportunities. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1444560.
- Yu, L.; Gao, W.; Shamshiri, R.R.; Tao, S.; Ren, Y.; Zhang, Y.; Su, G. (2021): Review of research progress on soil moisture sensor technology. International Journal of Agricultural and Biological Engineering, 14(4), 32–42. https://doi.org/10.25165/j.ijabe.20211404.6404
- Yue, C.; Lai, Y.; Watkins, E.; Patton, A.; Braun, R. (2023): A Behavioral Approach to Identify Barriers to Adoption of New Technology: A Case Study of Low-input Turfgrasses. Journal of Agricultural and Applied Economics, 55(1), 72–99. https://doi.org/10.1017/aae.2023.7
- Zha, X.; Jia, S.; Han, Y.; Zhu, W.; Lv, A. (2025): Enhancing Soil Moisture Prediction in Drought-Prone Agricultural Regions Using Remote Sensing and Machine Learning Approaches. Remote Sensing, 17(2), 181. https://doi.org/10.3390/rs17020181
- Zhai, Y.; Tan, X.; Ma, X.; An, M.; Zhao, Q.; Shen, X.; Hong, J. (2019): Water footprint analysis of wheat production. Ecological Indicators, 102, 95–102. https://doi.org/10.1016/j.ecolind.2019.02.036
- Zhang, X.; Feng, G.; Sun, X. (2024): Advanced technologies of soil moisture monitoring in precision agriculture: A Review. Journal of Agriculture and Food Research, 18, 101473. https://doi.org/10.1016/j.jafr.2024.101473
- Zhang, Y.; Wang, G.; Li, L.; Huang, M. (2025): A Monitoring Method for Agricultural Soil Moisture Using Wireless Sensors and the Biswas Model. Agriculture, 15(3), 344. https://doi.org/10.3390/agriculture15030344
https://doi.org/10.34101/actaagrar/2/16097