Articles

Seed treatment with Bacillus bacteria improves maize production: a narrative review

Published:
2024-06-03
Authors
View
Keywords
License

Copyright (c) 2024 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Ocwa, A., Ssemugenze, B., & Harsányi, E. (2024). Seed treatment with Bacillus bacteria improves maize production: a narrative review. Acta Agraria Debreceniensis, 1, 105-111. https://doi.org/10.34101/actaagrar/1/12043
Abstract

Maize (Zea mays L.) is an important crop in relation to its production and consumption. Production of maize is constrained by soil infertility and poor quality seed. Microbial technologies like seed treatment with Bacillus bacteria improves the productivity of maize on infertile soil. However, due to variations in maize growth environments and Bacillus species, this review was conducted to identify the common species of Bacillus species used for seed treatment, and provide an overview of the effect of seed treatment with Bacillus on maize growth and yield. Results show that Bacillus subtilis, Bacillus pumilus and Bacillus amyloliquefaciens were the dominant species used for seed treatment. Bacillus was used as both a biofertiliser and biopesticide. The conspicuous positive effects of Bacillus were in plant height, shoot and root length, and shoot dry matter depending on the species. In terms of grain yield, Bacillus subtilis (8502 kg ha-1), Bacillus amyloliquefaciens (6822 kg ha-1) and Bacillus safensis (5562 kg ha-1) were the bacterial species that had an overall pronounced effect. The highest increase in grain yield was in the interactive effect of Bacillus megaterium + Bacillus licheniformis (18.1%) and sole Bacillus subtilis (15.6%), while Bacillus pumilus reduced grain yield by 4.8%. This shows that the improvement of maize productivity using Bacillus bacteria requires careful selection of the species for seed treatment.

References
  1. Abadi, V.A.J.M.; Sepehri, M.; Rahmani, H.A.; Ronaghi, A.; Taghavi, S.M.; Shamshiripour, M. (2020): Role of Dominant Phyllosphere Bacteria with Plant Growth–Promoting Characteristics on Growth and Nutrition of Maize (Zea mays L.). J Soil Sci Plant Nutr. 20, 2348–2363. https://doi.org/10.1007/s42729-020-00302-1
  2. Accinelli, C.; Abbas, A.K.; Thomas Shier, W. (2018): A bioplastic based seed coating improves seedling growth and reduces production of coated seed dust. J of Crop Improv. 32, 318–330. https://doi.org/10.1080/15427528.2018.1425792
  3. Amogou, O.; Dagbénonbakin, G.; Agbodjato, N.; Noumavo, P.; Salako, K.; Adoko, M.; Kakaï, R.; Adjanohoun, A.; Baba-Moussa, L. (2019): Applying Rhizobacteria on Maize Cultivation in Northern Benin: Effect on Growth and Yield. Agricultural Sciences, 10, 763–782. 10.4236/as.2019.106059
  4. Akhtar, A.; Naveed, M.; Iqbal, M.Z.; Khalid, M.; Waraich, E.A (2016): Effect of consortium of plant growth promoting and compost inhabiting bacteria on physicochemical changes and defense response of maize in fungus infested soil. Pak. J. Agri. Sci. 53(1), 59–68.
  5. Babalola, O.O. (2010): Beneficial bacteria of agricultural importance. Biotechnol Lett. 32(11):1559–1570. https://doi.org/10.1007/s10529-010-0347-0
  6. Berg, G.; Grube, M.; Schloter, M.; Smalla, K. (2014): Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol. 5,1–7. https://doi.org/10.3389/fmicb.2014.00148
  7. Bhattacharyya, P.N.; Jha, D.K. (2012): Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 28:1327–1350. https://doi.org/10.1007/s11274-011-0979-9
  8. Bojtor, C.; Mousavi, S.M.N.; Illés, Á.; Golzardi, F.; Széles, A.; Szabó, A.; Nagy, J.; Marton, C.L. (2022): Nutrient composition analysis of maize hybrids affected by different nitrogen fertilisation systems. Plants 11, 1593. https://doi.org/10.3390/plants11121593
  9. Breedt, G.; Labuschagne, N.; Coutinho, T.A. (2017): Seed treatment with selected plant growth-promoting rhizobacteria increases maize yield in the field. Ann Appl Biol. 171, 229–236.
  10. Cardarelli, M.; Woo, S.L.; Rouphael, Y.; Colla, G. (2022); Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants, 11, 259. https://doi.org/10.3390/plants11030259
  11. Cano Camacho, V.; Potter, W.S.; McDaniel, D.M.; Licht, A.M. (2023); Impact of biological seed treatments on maize (Zea mays L.) and soil: Crop growth and yield. Agronomy Journal, 115:2877–2887. https://doi.org/10.1002/agj2.21445
  12. Cavaglieri, L.; Orlando, J.; Etcheverry, M. (2005); In vitro influence of bacterial mixtures on Fusarium verticillioides growth and fumonisin B1 production: effect of seeds treatment on maize root colonization, Letters in Applied Microbiology, 41(5), 390–396, https://doi.org/10.1111/j.1472-765X.2005.01785.x
  13. Chatterjee, N.; Sarkar, D.; Sankar, A.; Pal, S.; Singh, H.B.; Singh, R.K.; Bohra, J.S.; Rakshit, A. (2018): On-farm seed priming interventions in agronomic crops. Acta Agric. Slov. 111 (3), 715–735.
  14. Devika, O.S.; Singh, S.; Sarkar, D.; Barnwal, P.; Suman, J.; Rakshit, A. (2021): Seed priming: a potential supplement in integrated resource management under fragile intensive ecosystems. Front Sust Food Syst., 5, 654001. https://doi.org/10.3389/fsufs.2021.654001.
  15. Disi, J.O.; Kloepper, J.W.; Fadamiro, H.Y. (2018): Seed treatment of maize with Bacillus pumilus strain INR-7 affects host location and feeding by Western corn rootworm, Diabrotica virgifera virgifera. J Pest Sci., 91, 515–522. https://doi.org/10.1007/s10340-017-0927-z
  16. Djaenuddin, N.; Kalqutny, S.H.; Amran, M.; Azrai, M. (2021): Antagonistic Bacteria Bacillus subtilis Formulation as Biopesticide to Control Corn Downy Mildew caused by Peronosclerospora philippinensis. International Journal on Advanced Science, Engineering and Information Technology, 11(6), 2148–2152, https://doi.org/10.18517/ijaseit.11.6.12447
  17. Dorđević, S.; Stanojević, D.; Vidović, M.; Mandić, V.; Trajković, I. (2017): The use of bacterial indole-3-acetic acid (IAA) for reduce of chemical fertilisers doses. Hem. Ind. 71 (3), 195–200. https://doi.org/10.2298/HEMIND160317029D
  18. Egamberdiyeva, D. (2007): The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol, 36, 184–189, https://doi.org/10.1016/j.apsoil.2007.02.005
  19. FAO, (2020): World Food and Agriculture - Statistical Yearbook 2020. FAO, Rome. https://doi.org/10.4060/cb1329en.
  20. Ferrarezi, J.A.; Carvalho-Estrada, P.A.; Batista, B.D.; Aniceto, R.M.; Tschoeke, BM., et al. (2022): Effects of inoculation with plant growth-promoting rhizobacteria from the Brazilian Amazon on the bacterial community associated with maize in field. Appl Soil Ecol. 170: 1–14, https://doi.org/10.1016/j.apsoil.2021.104297
  21. Fukami, J.; Ollero, F.J.; Megías, M.; Hungria, M. (2017): Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express. 7, 153–163.
  22. Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Rodrigues, W.L.; Fernandes, G.C.; Boleta, E.H.M. et al. (2018): Nitrogen rates associated with the inoculation of Azospirillum brasilense and application of Si: effects on micronutrients and silicone concentration in irrigated corn. Open Agric. 3, 510–523.
  23. Gond, S.K.; Bergen, M.S.; Torres, M.S.; White, J.F. (2015): Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiological Research 172, 79–87. https://doi.org/10.1016/j.micres.2014.11.004
  24. Hagan, A.K.; Miller, H.B.; Burkett, J.; Burch, K. (2015); Root-knot control and yield response of corn with seed treatment and granular nematicides. Plant Health Prog. 16(4), 151–157.
  25. Harris, D.; Pathan, A.K.; Gothkar, P.; Joshi, A.; Chivasa, W.; Nyamudeza, P. (2001): On-farm seed priming: using participatory methods to revive and refine a key technology. Agric. Syst. 69 (1–2), 151–164.
  26. Hashem, A.; Tabassum, B.; Fathi Abd Allah, E. (2019): Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci. 26(6):1291–1297. http://doi.org/10.1016/j.sjbs.2019.05.004
  27. Hayat, R.; Ali, S.; Amara, U.; Khalid, R.; Ahmed, I. (2010): Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol. 60(4), 579–598. https://doi.org/10.1007/s13213-010-0117-1
  28. Houida, S.; Yakkou, L.; Kaya, L.; Bilen, S.; Fadil, M.; Raouane, M.; El Harti, A.; Amghar, S. (2022): Biopriming of maize seeds with plant growth-promoting bacteria isolated from the earthworm Aporrectodea molleri: effect on seed germination and seedling growth. Lett Appl Microbiol, 75: 61–69. https://doi.org/10.1111/lam.13693
  29. Illés, Á.; Mousavi, S.M.N.; Bojtor, C.; Nagy, J (2020): The plant nutrition impact on the quality and quantity parameters of maize hybrids grain yield based on different statistical methods. Cereal Research Communications 48, 565–573. https://doi.org/10.1007/s42976-020-00074-5
  30. Jalal, A.; Oliveira, C.E.d.S.; Fernandes, H.B.; Galindo, F.S.; Silva, E.C.d.; Fernandes, G.C.; Nogueira, T.A.R.; de Carvalho, P.H.G.; Balbino, V.R.; Lima, B.H.d.; et al. (2022): Diazotrophic Bacteria Is an Alternative Strategy for Increasing Grain Biofortification, Yield and Zinc Use Efficiency of Maize. Plants, 11, 1125. https://doi.org/10.3390/plants11091125
  31. Ji, S.H.; Gururani, M.A.; Chun, S.C. (2014): Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res. 169(1):83–98. https://doi.org/10.1016/j.micres.2013.06.003
  32. Karthika, C.; Vanangamudi, K. (2013): Biopriming of maize hybrid COH (M) 5 seed with liquid biofertilisers for enhanced germination and vigour. Afr. J. Agric. Res.. 8, 3310–3317.
  33. Katsenios, N.; Andreou, V.; Sparangis, P. et al. (2022): Assessment of plant growth promoting bacteria strains on growth, yield and quality of sweet corn. Sci Rep., 12: 11598. https://doi.org/10.1038/s41598-022-16044-2
  34. Li, H.; Haiwang, Y.; Li, L.; Yu, L.; Zhang, H.; Wang, J.; Jiang, X. (2021): Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Expr 11, 74. https://doi.org/10.1186/s13568-021-01237-1
  35. Lima, F.F.; Nunes, A.P.L.; Marcia do V.B.F.; de Araújo, F.F. et al. (2011): Effect of Bacillus subtilis inoculation and nitrogen fertilisation on maize yield. Revista Brasileira de Ciências Agrárias, 6(4):657–661.
  36. Ludueña, L.M.; Anzuay, M.S.; Angelini, J.G.; McIntosh, M.; Becker, A.; Rupp, O. et al. (2018): Strain Serratia sp. S119: a potential biofertiliser for peanut and maize and a model bacterium to study phosphate solubilization mechanisms. Appl. Soil Ecol. 126, 107–112.
  37. Mahmood, A.; Turgay, O.C.; Farooq, M.; Hayat, R. (2016): Seed biopriming with plant growth promoting rhizobacteria: A review. FEMS Microbiol. Ecol. 92(8). https://doi.org/10.1093/femsec/fiw112
  38. Mandic, V.; Dordevic, S.; Bijelic, Z.; Krnjaja, V.; Muslic, D.R.; Petricevic, M.; Simic, A. (2018): Effects of bacterial seed inoculation on microbiological soil status and maize grain yield. Philipp Agric Sci. 101(3), 243–250.
  39. Meena, R.P.; Sendhil, R.; Tripathi, S.C.; Chander, S.; Chhokar, R.S.; Sharma, R.K. (2013): Hydro-priming of seed improves the water use efficiency, grain yield and net economic return of wheat under different moisture regimes. SAARC J Agric. 11(2), 149–159.
  40. Mitter, E.K.; Tosi, M.; Obreg ́on, D., Dunfield, K.E.; Germida, J.J. (2021): Rethinking crop nutrition in times of modern microbiology: innovative biofertiliser technologies. Front. Sustain. Food Syst., 5, 29. https://www.frontiersin.org/article/10.3389/fsufs.2021.606815.
  41. Moreno, A.D.; Kusdra, F.J.; Picazevicz, A. (2021): Rhizobacteria inoculation in maize associated with nitrogen and zinc fertilisation at sowing. Rev. bras. eng. agríc. ambient 25(2) 96–100. http://dx.doi.org/10.1590/1807-1929/agriambi.v25n2p96-100
  42. Mubeen, M.; Bano, A.; Ali, B.; Islam, Z.; Ahmad, A.; Hussain, S.; Fahad, S.; Nasim, W. (2021): Effect of plant growth promoting bacteria and drought on spring maize (Zea mays L.). Pak. J. Bot. 53, 731–739.
  43. Mumtaz, M.Z.; Ahmad, M.; Jamil, M.; Hussain, H. (2017): Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol Res., 202, 51–60., http://dx.doi.org/10.1016/j.micres.2017.06.001
  44. Naamala, J.; Smith, D.L. (2020): Relevance of plant growth promoting microorganisms and their derived compounds, in the face of climate change. Agron. 10, 1179. https://doi.org/10.3390/agronomy10081179
  45. Negi, S.; Bharat, N.K. (2021): Seed Defense Biopriming. In: Plant-Microbial Interactions and Smart Agricultural Biotechnology; CRC Press: Boca Raton, FI, USA, 2021; pp. 129–146.
  46. Notununu, I.; Moleleki, L.; Roopnarain, A.; Adeleke, R. (2022): Effects of plant growth-promoting rhizobacteria on the molecular responses of maize under drought and heat stresses: A review. Pedosphere. 32(1): 90–106. https://doi.org/10.1016/S1002-0160(21)60051-6
  47. Pankievicz, V.C.S.; Amaral, F.P.; Santos, K.F.D.N.; Agtuca, B.; Xu, Y.; Schueller, M.J. et al. (2015): Robust biological nitrogen fixation in a model grass-bacterial association. Plant J. 81, 907–919.
  48. Pereira, N.C.M.; Galindo, F.S.; Gazola, R.P.D.; Dupas, E.; Rosa P.A.L.; Mortinho, E.S.; Teixeira Filho, M.C.M. (2020): Corn yield and phosphorus use efficiency response to phosphorus rates associated with plant growth promoting bacteria. Front. Environ. Sci., 8:40. https://doi.org/10.3389/fenvs.2020.00040
  49. Pfeiffer, T.; von Galen, A.; Zink, P. et al. (2021): Selection of bacteria and fungi for control of soilborne seedling diseases of maize. J Plant Dis Prot, 128, 1227–1241. https://doi.org/10.1007/s41348-021-00498-z
  50. Pereira, P.; Nesci, A.; Castillo, C.; Etcheverry, M. (2010): Impact of bacterial biological control agents on fumonisin B1 content and Fusarium verticillioides infection of field-grown maize, Biological Control, 53, (2010) 258–266.
  51. Pereira, P.; Ibánez, S.G.; Agostini, E.; Etcheverry, M. (2011): Effects of maize inoculation with Fusarium verticillioides and with two bacterial biocontrol agents on seedlings growth and antioxidative enzymatic activities. Appl Soil Ecol. 51, 52–59. https://doi.org/10.1016/j.apsoil.2011.08.007
  52. Piri, R.; Moradi, A.; Balouchi, H.; Salehi, A. (2019): Improvement of cumin (Cuminum cyminum) seed performance under drought stress by seed coating and biopriming. Sci. Hortic. 257, 108667.
  53. Qi, G.; Pan, Z.; Sugawa, Y.; Andriamanohiarisoamanana, F.J.; Yamashiro, T.; Iwasaki, M. et al. (2018): Comparative fertiliser properties of digestates from mesophilic and thermophilic anaerobic digestion of dairy manure: focusing on plant growth promoting bacteria (PGPB) and environmental risk. J. Mat. Cycles Waste Manag., 20, 1–10. https://doi.org/10.1007/s10163-018-0708-7
  54. Rajendra Prasad, S.; Kamble, U.R.; Sripathy, K.; Udaya Bhaskar, K.; Singh, D. (2016): Seed bio-priming for biotic and abiotic stress management. In: Microbial Inoculants in Sustainable Agricultural Productivity; Springer: Berlin/Heidelberg, Germany, pp. 211–228.
  55. Rashid, A.; Harris, D.; Hollington, P.A.; Khattak, R.A. (2002): On-farm seed priming: a key technology for improving the livelihoods of resource-poor farmers on saline lands. In: Ahmad, R., Malik, K.A. (eds) Prospects for Saline Agriculture. Tasks for vegetation science., 37, https://doi.org/10.1007/978-94-017-0067-2_44
  56. Rocha, I.; Ma, Y.; Souza-Alonso, P.; Vosátka, M.; Freitas, H.; Oliveira, R.S. (2019): Seed Coating: a tool for delivering beneficial microbes to agricultural crops. Front. Plant Sci. 10:1357. https://doi.org/10.3389/fpls.2019.01357
  57. Roslan, M.A.M.; Zulkifli, N.N.; Sobri, Z.M.; Zuan, A.T.K.; Cheak, S.C.; Abdul Rahman, N.A.; (2020): Seed biopriming with P-and K-solubilizing Enterobacter hormaechei sp. improves the early vegetative growth and the P and K uptake of okra (Abelmoschus esculentus) seedling. PloS ONE. 15 (7), e0232860 https://doi.org/10.1371/journal.pone.0232860.
  58. Rudolph, N.; Labuschagne, N.; Aveling, T.A.S. (2015): Seed inoculation with Pseudomonas fluorescens promotes growth, yield and reduces nitrogen application in maize. Seed Sci. & Technol., 43, 507–518. http://doi.org/10.15258/sst.2015.43.3.04
  59. Sandini, I.E.; Pacentchuk, F.; Hungria, M.; Nogueira, M.A.; da Cruz, S.P.; Nakatani, A.S.; Araujo, R.S. (2019): Seed inoculation with pseudomonas fluorescens promotes growth, yield and reduces nitrogen application in maize. Int. J. Agric. Biol., 22, 1369–1375.
  60. Sarkar, D.; Ray, S.; Singh, N.K.; Rakshit, A.; Singh, H.B. (2018): Seed priming with bio-inoculants triggers nutritional enrichment in vegetables: a review. IJAEB. 727–735.
  61. Sarkar, D.; Singh, S.; Parihar, M.; Raksshit, A. (2021): Seed bio-priming with microbial inoculants: A tailored approach towards improved crop performance, nutritional security, and agricultural sustainability for smallholder farmers. CRSUST. 3, 100093, https://doi.org/10.1016/j.crsust.2021.100093
  62. Shaffique, S.; Khan, M.A.; Wani, S.H.; Imran, M.; Kang, S.M.; Pande, A.; Adhikari, A.; Kwon, E.H.; Lee, I.J. (2022): Biopriming of maize seeds with a novel bacterial strain sH-6 to enhance drought tolerance in South Korea. Plants 11, 1674. https://doi.org/10.3390/plants11131674
  63. Singh, P.; Singh, J.; Ray, S.; Rajput, R.S.; Vaishnav, A.; Singh, R.K.; Singh, H.B. (2020): Seed biopriming with antagonistic microbes and ascorbic acid induce resistance in tomato against Fusarium wilt. Microbiol. Res. 237, 126482.
  64. Stein, T. (2005): Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol, 56, pp. 845–857.
  65. Szeles, A.V.; Nagy, J. (2012): Irrigation and nitrogen effects on the leaf chlorophyll content and grain yield of maize in different crop years. Agricultural Water Management, 107, 133–144. https://doi.org/10.1016/j.agwat.2012.02.001
  66. Tesfaye, K.; Zaidi, P.H.; Gbegbelegbe, S.; Boeber, C.; Rahut, D.B.; Getaneh, F.; Seetharam, K.; Erenstein, O.; Stirling, C. (2017): Climate change impacts and potential benefits of heat-tolerant maize in South Asia. Theor Appl Climatol. 130: 959–970. https://doi.org/10.1007/s00704-016-1931-6
  67. Vagedes, R.V.; Lindsey, A.J. (2020): Early season growth of corn as influenced by seed treatment. Agrosyst Geosci Environ., 3:e20080. https://doi.org/10.1002/agg2.20080
  68. Wang, H.; Wen, K.; Zhao, X.; Wang, X.; Li, A.; Hong, A. (2009): The inhibitory activity of endophytic Bacillus sp. Strain CHM1 against plant pathogenic fungi and its plant growth-promoting effect. Crop Prot, 28, 634–S639.
  69. Xue Y.F.; Yue S.C.; Liu D.Y.; Zhang W.; Chen X.P.; Zou C.Q. (2019): Dynamic zinc accumulation and contributions of pre-and/or post-silking zinc uptake to grain zinc of maize as affected by nitrogen supply. Front. Plant Sci. 10, 1203. https://doi.org/10.3389/fpls.2019.01203
  70. Zakavi, M.; Askari, H.; Shahrooei, M. (2022): Maize growth response to different Bacillus strains isolated from a salt-marshland area under salinity stress. BMC Plant Biology, 1–14. https://doi.org/10.1186%2Fs12870-022-03702-w
  71. Zeffa, D.M.; Perini, L.J.; Silva, M.B.; de Sousa, N.V.; Scapim, C.A.; Oliveira, A.L.M. et al. (2019): Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS One 14:e0215332.
  72. Zerrouk, I.Z.; Rahmoune, B.; Auer, S.; Robler, S.; Lin, T.; Baluska, F.; Dobrev, P.I.; Motyka, V.; Ludwig-Muller, J. (2020): Growth and aluminum tolerance of maize roots mediated by auxin- and cytokinin-producing Bacillus toyonensis requires polar auxin transport. EEB. 176, 1–11. https://doi.org/10.1016/j.envexpbot.2020.104064