Biostimulant induce growth, chlorophyll content and fresh herbage yield of alfalfa (Medicago sativa L.) and variegated alfalfa (Medicago × varia Martyn) plant
Authors
View
Keywords
License
Copyright (c) 2024 by the Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
How To Cite
Abstract
The use of biostimulants is associated with promoting plant growth by stimulating cell division and improving nutrient availability and uptake. A study was conducted at the University of Debrecen, Hungary, to examine the effect of biostimulants on alfalfa growth, chlorophyll content and fresh herbage yield. The experiment was arranged in a randomised complete block design with three biostimulant treatments plus control replicated three times. Data collected were subjected to analyses of variance using Genstat, where significantly different means were separated at a probability of 5% using the least significant difference. The findings show no different variation in plant height or chlorophyll content (SPAD) throughout the early stages of growth. Nonetheless, a notable impact was noted in the latter stages (28 days after biostimulant treatment application) on the growth of the alfalfa plant. Biostimulant treatments did not had effect on fresh yield for second through fourth cuts, but the fifth cut showed a significant effect, with T1 treatment recording the highest herbage yield of 19745 kg ha-1 followed by T2 (Tricho Immun plus Ino Green) and T3 (Tricho Immun), with yields of 19528 kg ha-1 and 17273 kg ha-1, respectively, while the T0 (control) recorded the lowest herbage yield of 12060 kg ha-1. However, the average mean yield indicated the application of biostimulants significantly increased fresh yield herbage by 20.5%. Correlation coefficient values suggested plant height at both 14 and 28 DAH (days after harvest) strongly correlated with fresh herbage yield (r = 0.7756 and 0.7455) which reflected in the increase in fresh herbage yield. Therefore, our results suggest that the use of biostimulants in alfalfa cultivation holds promise for improving growth and yield potential through their positive effects on chlorophyll content and the growth of alfalfa plant.
References
- Abbas, M.; Anwar, J.; Zafar-ul-Hye, M.; Iqbal Khan, R.; Saleem, M.; Rahi, A.A.; Datta, R. (2020): Effect of seaweed extract on productivity and quality attributes of four onion cultivars. Horticulturae, 6(2), 28. https://doi.org/10.3390/horticulturae6020028
- Abirami, S.; Gayathri, S.S.; Usha, C. (2022): Trichoderma as biostimulant-a plausible approach to alleviate abiotic stress for intensive production practices. In New and Future Developments in Microbial Biotechnology and Bioengineering pp. 57–84. Elsevier. https://doi.org/10.1016/B978-0-323-85577-8.00004-4
- Alam, M.Z.; Braun, G.; Norrie, J.; Mark Hodges, D. (2014): Ascophyllum extract application can promote plant growth and root yield in carrot associated with increased root-zone soil microbial activity. Canadian Journal of Plant Science, 94(2), 337–348. https://doi.org/10.4141/cjps2013-135
- Albrecht, U. (2019): Plant Biostimulants: definition and overview of categories and effects. University of Florida.
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. (2015): Biostimulants and crop responses: a review. Biological Agriculture & Horticulture, 31(1), 1–17. https://doi.org/10.1080/01448765.2014.964649
- Chaski, C.; Petropoulos, S.A. (2022): The Effects of biostimulant application on growth parameters of lettuce plants grown under deficit irrigation conditions. In: Biology and Life Sciences Forum, Vol. 16, No. 1, p. 4. https://doi.org/10.3390/IECHo2022-12499
- Csótó, A.; Kovács, C.; Pál, K.; Nagy, A.; Peles, F.; Fekete, E.; Levente, K.; Christian, P.K.; Sándor, E. (2023): The Biocontrol Potential of Endophytic Trichoderma Fungi Isolated from Hungarian Grapevines, Part II, Grapevine Stimulation Pathogens 12, no. 1: 2. https://doi.org/10.3390/pathogens12010002
- De Beer, J.; Swanepoel, P.A.; van Zyl, J.H.C.; Steyn, L. (2023): Biostimulant effects on the herbage yield and nutritive composition of a mixed ryegrass–clover pasture. African Journal of Range & Forage Science, 41(2)1–8.
- De Vasconcelos, A.C.F.; Chaves, L.H.G. (2019): Biostimulants and their role in improving plant growth under abiotic stresses. Biostimulants in plant science, 3–16.
- El Moussaoui, H.; Idardare, Z.; Bouqbis, L. (2023): Assessing Alfalfa Productivity and Physiological Parameters: Biochar and Biocompost Versus Conventional Fertilizers with Manure and Chemical Fertilizers. Water, Air, & Soil Pollution, 234(9), 1–18. https://doi.org/10.1007/s11270-023-06618-9
- Ertani, A.; Schiavon, M.; Muscolo, A.; Nardi, S. (2013): Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant and soil, 364, 145–158. https://doi.org/10.1007/s11104-012-1335-z
- Fiorentino, N.; Ventorino, V.; Woo, S.L.; Pepe, O.; De Rosa, A.; Gioia, L.; Rouphael, Y. (2018): Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Frontiers in plant science, 9, 743. https://doi.org/10.3389/fpls.2018.00743
- Gebashe, F.; Gupta, S.; Van Staden, J. (2021): Disease management using biostimulants. In Biostimulants for Crops from Seed Germination to Plant Development. 411–425. Academic Press.
- Godlewska, A.; Ciepiela, G. A. (2016): The effect of growth regulator on dry matter yield and some chemical components in selected grass species and cultivars. Soil Science and Plant Nutrition, 62(3), 297–302. https://doi.org/10.1080/00380768.2016.1185741
- Godlewska, A.; Ciepiela, G.A. (2020): Yield performance and content of selected organic compounds in Trifolium pratense Treated with various biostimulants against the background of nitrogen fertilisation. Legume Research-An International Journal, 43(6), 850–855.Doi: 10.18805/LR-522
- Hanson, B.; Putnam, D.; Snyder, R. (2007): Deficit irrigation of alfalfa as a strategy for providing water for water-short areas. Agricultural water management, 93(1–2), 73–80. https://doi.org/10.1016/j.agwat.2007.06.009
- Héctor-Ardisana, E.; Torres-García, A.; Fosado-Téllez, O.; Peñarrieta-Bravo, S.; Solórzano-Bravo, J.; Jarre-Mendoza, V.; Montoya-Bazán, J. (2020): Influencia de bioestimulantes sobre el crecimiento y el rendimiento de cultivos de ciclo corto en Manabí, Ecuador. Cultivos Tropicales, 41(4).
- Hernández-Herrera, R.M.; Sánchez-Hernández, C.V.; Palmeros-Suárez, P.A.; Ocampo-Alvarez, H.; Santacruz-Ruvalcaba, F.; Meza-Canales, I.D.; Becerril-Espinosa, A. (2022): Seaweed extract improves growth and productivity of tomato plants under salinity stress. Agronomy, 12(10), 2495. https://doi.org/10.3390/agronomy12102495
- Kovács, C.; Csótó, A.; Pál, K.; Nagy, A.; Peles, F.; Fekete, E.; Levente, K.; Christian, P.K.; Sándor, E. (2021): The Biocontrol Potential of Endophytic Trichoderma Fungi Isolated from Hungarian Grapevines. Part I. Isolation, Identification and In Vitro Studies Pathogens, 10, no. 12: 1612. https://doi.org/10.3390/pathogens10121612
- Latif, A.; Sun, Y.; Noman, A. (2023): Herbaceous Alfalfa plant as a multipurpose crop and predominant forage specie in Pakistan. Frontiers in Sustainable Food Systems, 7, 1126151. https://doi.org/10.3389/fsufs.2023.1126151
- Malik, A.; Mor, V. S.; Tokas, J.; Punia, H.; Malik, S.; Malik, K.; Karwasra, A. (2020): Biostimulant-treated seedlings under sustainable agriculture: A global perspective facing climate change. Agronomy, 11(1), 14. https://doi.org/10.3390/agronomy11010014
- Marinova, D.; Stoyanova, S.; Petrova, I. (2023): effect of foliar application of biostimulants on forage yield in alfalfa (Medicago sativa L.). Turk J Field Crops, 28(1), 7–14. DOI: 10.17557/tjfc.1192602
- Murawska, B.; Gabrowska, M.; Spychaj-Fabisiak, E.; Wszelaczynska, E.; Chmielewski, J. (2017): Production and environmental aspects of the application of biostimulators Asahi SL, Kelpak SL and stimulator Tytanit with limited doses of nitrogen. Environmental Protection and Natural Resources, 28(4), 10–15. DOI 10.1515 /oszn-2017-0024
- Mystkowska, I. (2022): The Effect of Biostimulants on the Chlorophyll Content and Height of Solanum tuberosum L. Plants. Journal of Ecological Engineering, 23(9). DOI,10.12911/22998993/151713
- Nosheen, A.; Bano, A.; Naz, R.; Yasmin, H.; Hussain, I.; Ullah, F.; Keyani, R.; Hassan, M.N.; Tahir, A.T. (2019): Nutritional value of Sesamum indicum L. was improved by Azospirillum and Azotobacter under low input of NP fertilizers. BMC plant biology, 19:466 DOI 10.1186/s12870-019-2077-3
- Pandey, C.; Diwan, H. (2018): Integrated approach for managing fertilizer intensification linked environmental issues. Management of Environmental Quality: An International Journal, 29(2), 324–347.
- Peț, I.; Dragomir, N.; Dragomir, C.; Peț, E.; Sarbu, A.; Tapalagă, I.; Mihăescu, L. (2008): Researches concerning the effect of some biologically-active products on forage biomass yield in smooth brome. Lucrări Științifice-Zootehnie și Biotehnologii, Universitatea de Științe Agricole și Medicină Veterinară a Banatului Timișoara, 41(1), 352–356.
- Puglisi, I.; La Bella, E.; Rovetto, E.I.; Lo Piero, A.R.; Baglieri, A. (2020): Biostimulant effect and biochemical response in lettuce seedlings treated with a Scenedesmus quadricauda extract. Plants, 9(1), 123. https://doi.org/10.3390/plants9010123
- Ramesh, K.; Chandrasekaran, B.; Balasubramanian, T.N.; Bangarusamy, U.; Sivasamy, R.; Sankaran, N. (2002): Chlorophyll dynamics in rice (Oryza sativa) before and after flowering based on SPAD (chlorophyll) meter monitoring and its relation with grain yield. Journal of Agronomy and Crop Science, 188(2), 102–105. https://doi.org/10.1046/j.1439-037X.2002.00532.x
- Raza, Q.U.A.; Bashir, M.A.; Rehim, A.; Ejaz, R.; Raza, H.M.A.; Shahzad, U.; Geng, Y. (2022): Biostimulants induce positive changes in the radish morpho-physiology and yield. Frontiers in Plant Science, 13, 950393. https://doi.org/10.3389/fpls.2022.950393
- Retta, A.; Hanks, R.J. (1980): Corn and alfalfa production as influenced by limited irrigation. Irrigation science, 1, 135–147. https://doi.org/10.1007/BF00270878
- Samuels, L.J.; Setati, M.E.; Blancquaert, E.H. (2022): Towards a better understanding of the potential benefits of seaweed based biostimulants in Vitis vinifera L. cultivars. Plants, 11(3), 348. https://doi.org/10.3390/plants11030348
- Stamatov, S.; Velcheva, N. (2020): Effect of Leaf Fertilizers and Biostimulators on Productivity of Wheat and Sunflower. New knowledge Journal of science, 9(1), 101–107.
- Szparaga, A.; Kocira, S.; Kocira, A.; Czerwińska, E.; Świeca, M.; Lorencowicz, E.; Oniszczuk, T. (2018): Modification of growth, yield, and the nutraceutical and antioxidative potential of soybean through the use of synthetic biostimulants. Frontiers in Plant Science, 9, 1401. https://doi.org/10.3389/fpls.2018.01401
- Trawczyński C. (2020): The effect of biostimulators on the yield and quality of potato tubers grown in drought and high temperature conditions. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 289/2020, 11–19. (in Polish) DOI: 10.37317/biul-2020-0017
- Tyagi, J.; Ahmad, S.; Malik, M. (2022): Nitrogenous fertilizers: Impact on environment sustainability, mitigation strategies, and challenges. International Journal of Environmental Science and Technology, 19(11), 11649–11672. https://doi.org/10.1007/s13762-022-04027-9
- Vukelić, I.D.; Prokić, L.T.; Racić, G.M.; Pešić, M.B.; Bojović, M.M.; Sierka, E.M.; Panković, D.M. (2021): Effects of Trichoderma harzianum on photosynthetic characteristics and fruit quality of tomato plants. International Journal of Molecular Sciences, 22(13), 6961. https://doi.org/10.3390/ijms22136961
- Wadas, W.; Dziugieł, T. (2020). Changes in assimilation area and chlorophyll content of very early potato (Solanum tuberosum L.) cultivars as influenced by biostimulants. Agronomy, 10(3), 387. https://doi.org/10.3390/agronomy10030387