Articles

Study of the effects of silicon and sulphur foliar fertilization on yield components and yield in different winter oat cultivars

Published:
2024-06-03
Authors
View
Keywords
License

Copyright (c) 2024 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Forgács, F. Z., Virág, I. C., & Kutasy, E. T. (2024). Study of the effects of silicon and sulphur foliar fertilization on yield components and yield in different winter oat cultivars. Acta Agraria Debreceniensis, 1, 43-49. https://doi.org/10.34101/actaagrar/1/14300
Abstract

The aim of this work was to study the effect of sulphur and silicon foliar fertilisation treatment in different Hungarian-bred winter oat cultivars on the yield and the yield components, e.g. panicle ear-1 numbers per square meters, number of panicle nodes, number of spikelets per panicle, and thousand kernel weight (TKW) in the 2022–2023 growing season. The obtained results show that the applied fertilisers influenced the measured parameters, and we get the highest yield at the combined treatment – where silicon and sulphur was both applied –, and unexpectedly the lowest when only silicon was applied during the growing period. We measured the highest number of panicles m-2 at the sulphur treated experimental plots, and the lowest at the silicon treatment. We measured the average number of nodes of the panicle, and we can say that the sulphur fertilisation caused significantly higher values than any other treatment. Talking about the spikelet numbers, we get the highest value at the sulphur fertilisation, and the lowest at the control plots. However, our result wasn’t that prominent in the case of TKW, we get the highest weight at the silicon treatment, and the lowest at the sulphur fertilisation.

References
  1. Al, H.R.L.M.T.; Mahmoud, J.M.R. (2021): Effect Agricultural Sulfur and Nitrogen on Growth and Yield Stressed Oat (Avena Sativa L.). Annals of the Romanian Society for Cell Biology. 25(1): 6073–6079.
  2. Ali, A.; Arshadullah, M.; Hyder, S.I.; Mahmood, I.A. (2012): Effect of different levels of sulfur on the productivity of wheat in a saline sodic soil. Soil and Environment, 31(1): 91–95.
  3. Aouz, A.; Khan, I.; Chattha, M.B.; Ahmad, S.; Ali, M.; Ali, I.; Ali, I.; Alqahtani, F.M.; Hashem, M.; Albishi, T.S.; Qari, S.H.; Chatta, M.U.; Hassan, M.U. (2023): Silicon induces heat and salinity tolerance in wheat by increasing antioxidant activities, photosynthetic activity, nutrient homeostasis, and osmo-protectant synthesis. Plants, 12(14): 2606. DOI: 10.3390/plants12142606
  4. Artyszak, A. (2018): Effect of silicon fertilisation on crop yield quantity and quality—A literature review in Europe. Plants. 7(3): 54. DOI: 10.3390/plants7030054
  5. Barczak, B.; Klikocka, H.; Kozera, W.; Knapowski, T. (2018): Assessment of the effect of sulphur fertilisation on oat grain yield and micronutrient uptake. Journal of Elementology, 23(1): 45–56. DOI: 10.5601/jelem.2017.22.1.1318
  6. Cociu, A. I. (2018): Relationship among yield and yield components of winter wheat (Triticum aestivum L.) cultivars, as affected by tillage systems. Romanian Agricultural Research, 35, 155–161. DOI: 10.59665/rar3520
  7. Daou, C.; Zhang, H. (2012): Oat beta‐glucan: its role in health promotion and prevention of diseases. Comprehensive reviews in food science and food safety, 11(4): 355–365. DOI: 10.1111/j.1541-4337.2012.00189.x
  8. Datnoff, L.E.; Rodrigues, F.A. (2015): History of silicon and plant disease. In Silicon and plant diseases, 2nd ed.: Rodrigues, F.A.; Datnoff, L.E., Eds.: Springer Cham, Switzerland, Chapter 1, pp. 1–5. DOI: 10.1007/978-3-319-22930-0_1
  9. Debona, D.; Rodrigues, F.A.; Datnoff, L.E. (2017): Silicon's role in abiotic and biotic plant stresses. Annual Review of Phytopathology, 55(4): 85–107. DOI: 10.1146/annurev-phyto-080516-035312
  10. Eroshenko, L.M.; Levakova, O.V.; Gladysheva, O.V.; Gureeva, E.V.; Romakhin, M.M.; Dedushev, I.A. (2021): The elements of productivity and their contribution to high level of crop yield (based on spring barley researches). IOP Conference Series: Earth and Environmental Science, 843(1): 012005. DOI 10.1088/1755-1315/843/1/012005
  11. Hassan, M.F.; Alsulaiman, M.A. (2023): Effect of Foliar application of Silicon on Oat varieties (Avena sativa L.) Grain yield and Components under Silt-affected soil. Texas Journal of Agriculture and Biological Sciences, 12. 57–62.
  12. Hussain, Z.; Leitch, M.H. (2008): Effects of foliar applied sulfur and commercial growth regulators in wheat. Journal of plant nutrition, 31(10): 1699–1710.
  13. Khalifa, A.; Hussein, M.A.; Gomaa, M. (2016): Effect of sulphur and silicon application on the yield and chemical composition of maize grown under saline soil conditions. Journal of the Advances in Agricultural Researches, 21(3): 496–509. DOI: 10.21608/jalexu.2016.237298
  14. Korndörfer, G.H.; Lepsch, I. (2001): Effect of silicon on plant growth and crop yield. In Studies in plant science, 2nd ed.: Datnoff, L.E.; Snyder, G.H.; Korndörfer, G.H., Eds.; Elsevier, Volume 8, pp. 133–147. DOI: 10.1016/S0928-3420(01)80011-2
  15. Kutasy, E.; Buday-Bódi, E.; Virág, I.Cs.; Forgács, F.; Melash, A.A.; Zsombik, L.; Nagy, A.; Csajbók, J. (2022): Mitigating the negative effect of drought stress in oat (Avena sativa L.) with silicon and sulphur foliar fertilisation. Plants, 11(1): 30. DOI: 10.3390/plants11010030.
  16. Kutasy, E.; Diósi, G.; Buday-Bódi, E.; Nagy, P.T.; Melash, A.A.; Forgács, F.Zs.; Virág I.Cs.; Vad, A.M.; Bytyqi, B.; Buday, T.; Csajbók, J. (2023): Changes in plant and grain quality of winter oat (Avena sativa L.) varieties in response to silicon and sulphur foliar fertilisation under abiotic stress conditions. Plants, 12(4): 969. DOI: 10.3390/plants12040969
  17. Liang, M.D.; Gatarayiha, M.C.; Adandonon, A. (2006): Silicon use for pest control in agriculture: a review. Proceedings of the South African Sugar Technologists’ Association. 80. 278–286.
  18. Lucheta, A.R.; Lambais, M.R. (2012): Sulfur in agriculture. Revista Brasileira de Ciência do Solo, 36. 1369–1379.
  19. Orlovius, K. (2001): Effect of foliar fertilisation with magnesium, sulfur, manganese and boron to sugar beet, oilseed rape, and cereals. Plant Nutrition: Food security and sustainability of agro-ecosystems through basic and applied research, Volume 92. 788–789.
  20. Paudel, D.; Dhungana, B.; Caffe, M.; Krishnan, P. (2021): A review of health-beneficial properties of oats. Foods, 10. 11: 2591. DOI: 10.3390/foods10112591
  21. Richmond, K.E.; Sussman, M. (2003): Got silicon? The non-essential beneficial plant nutrient. Current opinion in plant biology, 6(3): 268–272. DOI: 10.1016/s1369-5266(03)00041-4
  22. Rodrigues, F.A.; Dallagnol, L.J.; Duarte, H.S.S.; Datnoff, L.E. (2015): Silicon control of foliar diseases in monocots and dicots. In Silicon and plant diseases, 2nd ed.: Rodrigues, F.A.; Datnoff, L.E., Eds.: Springer Cham, Switzerland, Chapter 4, pp. 67–108.
  23. Salvagiotti, F.; Miralles, D.J. (2008): Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilisation in wheat. European Journal of Agronomy. 28 (3): 282–290. DOI: 10.1016/j.eja.2007.08.002
  24. Soratto, R.P.; Crusciol, C.A.C.; Castro, G.S.A.; Costa, C.H.M.D.; Ferrari Neto, J. (2012): Leaf application of silicic acid to white oat and wheat. Revista Brasileira de Ciência do Solo, 36. (5): 1538–1544.
  25. Stanton, T.R. (1953): Production, harvesting, processing, utilisation and economic importance of oats. Economic Botany. 7(1): 43–64. DOI: 10.1007/BF02984989
  26. Thakral, V.; Bhat, J.A.; Kumar, N.; Myaka, B.; Sudhakaran, S.; Patil, G.; Sonah, H.; Shivaraj, S. M.; Deshmukh, R. (2021): Role of silicon under contrasting biotic and abiotic stress conditions provides benefits for climate smart cropping. Environmental and Experimental Botany, 189. 104545. DOI:10.1016/J.ENVEXPBOT.2021.104545
  27. Waraich, E.A.; Hussain, A.; Ahmad, Z.; Ahmad, M.; Barutçular, C. (2022): Foliar application of sulfur improved growth, yield and physiological attributes of canola (Brassica napus L.) under heat stress conditions. Journal of Plant Nutrition, 45(3): 369–379. DOI: 10.1080/01904167.2021.1985138