Articles

Basil (Ocimum basilicum L.) harvest and plant replacement methods in aquaponia

Published:
December 1, 2023
Authors
View
Keywords
License

Copyright (c) 2023 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Lelesz, J. Éva, & Virág, I. C. (2023). Basil (Ocimum basilicum L.) harvest and plant replacement methods in aquaponia. Acta Agraria Debreceniensis, 2, 91-98. https://doi.org/10.34101/actaagrar/2/13243
Received 2023-08-28
Accepted 2023-09-26
Published 2023-12-01
Abstract

The aim of the study is to investigate the potential of basil leaf mass production under aquaponic conditions with different harvest and plant replacement methods. Aquaponics is a combination of soil-less crop production hydroponics and aquaculture and it is can use and clean the wastewater of intensive aquaculture systems. Three groups were established in the 6 units during the six-week harvest and seedling rotation cycles. Group 1 individuals remain in the units throughout the breeding season. Group 2 individuals were replaced every 12 weeks, while Group 3 individuals were replaced every six weeks, at the same time as harvest. Data from the experiment were analysed to determine how the harvest and replacement protocol of basil plants influences the amount of leaves harvested, the percentage of leaves harvested relative to the plant stem, and the changes in plant height, SPAD and NDVI during harvest and replacement. A continuously maintained and harvested healthy basil stock under aquaponic conditions can provide a consistent leaf mass all year round without the extra cost of replacing and producing seedlings.

References
  1. Ahmed, E.A.–Hassan, E.A.–El Tobgy, K.M.K.–Ramadan, E.M. (2014): Evaluation of rhizobacteria of some medicinal plants for plant growth promotion and biological control, Annals of Agricultural Sciences, Volume 59, Issue 2, December 2014, Pages 273–280., https://doi.org/10.1016/j.aoas.2014.11.016
  2. Bernáth, J. (Szerk.) (2000): Gyógy- és aromanövények, Mezőgazda Kiadó, Budapest ISBN 963 286 258 9
  3. Bernstein, N.–Kravchik, M.–Dudai, N. (2010): Salinity-induced changes in essential oil, pigments and salts accumulation in sweet basil (Ocimum basilicum) in relation to alterations of morphological development, Annals of Applied Biology (2010) Volume156, Issue2, Pages 167–177., https://doi.org/10.1111/j.1744-7348.2009.00376.x
  4. Chalchat, J-C.–Özcan M.M. (2008): Comparative essential oil composition of flowers, leavesand stems of basil (Ocimum basilicum L.) used as herb, Food Chemistry, Volume 110, Issue 2, 15 September 2008, Pages 501–503., https://doi.org/10.1016/j.foodchem.2008.02.018
  5. Csorvási, É.–Juhász, P.–Fehér, M.–Nemes, I.–Stündl, L.–Takácsné Hájos, M.–Bársony, P. (2014): A kísérleti akvapónia rendszer tervezésének és működtetésének gyakorlati tapasztalatai, Agrártudományi Közlemények, 2014/57., 27–32.
  6. https://doi.org/10.34101/actaagrar/57/1955
  7. FAO (2022): The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en
  8. Lal, R. (2013): Beyond Intensification, Paper Presentation at the ASA, CSSA, & SSSA International Annual Meetings, Tampa, Florida, USA (2013) https://a-c-s.confex.com/scisoc/2013am/webprogramschedule/Paper78612.html
  9. Lehman, H.–Clark, E.A.–Weise, S.F. (1993):Clarifying the definition of Sustainable agriculture, Journal of Agricultural and Environmental Ethics volume 6, pages 127–143., https://link.springer.com/article/10.1007/BF01965480
  10. Love, D.C.–Fry, J.P.–Li, X.–Hill, E.S.–Genello, L.–Semmens, K.–Thompson, R.E. (2015): Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture 435 67–74., https://doi.org/10.1016/j.aquaculture.2014.09.023
  11. Mangmang, J.S.–Rosalind, D.–Rogers, G. (2016): Inoculation effect of Azospirillum brasilense on basil grown under aquaponics production system Org. Agri., 6 (1), pp. 65–74., https://www.scopus.com/record/display.uri?eid=2-s2.0-84988431520&origin=inward&txGid=1c000aaa90bc978393ed7775631ef2e6
  12. Mchunu, N.–Lagerwall, G.–Senzanje, A. (2018): Aquaponics in South Africa: Results of a national survey, Aquaculture Reports 12. 12–19. https://doi.org/10.1016/j.aqrep.2018.08.001
  13. Medina, M.–Jayachandran, K.–Bhat, M.G.–Deoraj, A. (2016): Assessing plant growth, water quality and economic effects from application of a plant-based aquafeed in a recirculating aquaponic system, Aquac. Int., 24 (1), pp. 415–427. https://link.springer.com/article/10.1007/s10499-015-9934-3
  14. Nguyen, P.M.–Kwee, E.M.–Niemeyer, E.D. (2010): Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves, Food Chemistry, Volume 123, Issue 4, 15 December 2010, Pages 1235–1241. https://doi.org/10.1016/j.foodchem.2010.05.092
  15. Peley, Á.–Gönczi, P. (2013): Az akvapónia: egy ígéretes integrált mezőgazdasági termelő rendszer, Agroinform, XXII. évf., 6. szám, 34–35., ISSN: 1788-0874
  16. Peley, Á.–Gönczi, P.–Nemes, I.–Stündl, L. (2012): Az akvapónia alkalmazási lehetőségei a haltermelésben, Halászat, 105. évf., 3. szám, 8–10., ISSN: 0133-1922
  17. Piedrahita, R.H. (2003): Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation, Aquaculture, Volume 226, Issues 1–4, 31 October 2003, Pages 35–44., https://doi.org/10.1016/S0044-8486(03)00465-4
  18. Rakocy, J.E.–Hargreaves, J.A. (1993): Integration of vegetable hydroponics with fish culture: a review, J.K. Wang (Ed.), Techniques for Modern Aquaculture, Am. Soc. Agric Engineers, St. Joseph, MI, USA (1993), pp. 112–136. https://cir.nii.ac.jp/crid/1570291224276569856
  19. Rakocy, J.–Shultz, R.C.–Bailey, D.S.–Thoman, E.S. (2004a): Aquaponic production of tilapia and basil: comparing a batch and staggered cropping system, Acta. Hort., 648, pp. 63–69 https://www.actahort.org/books/648/648_8.htm
  20. Rakocy, J.E.–Bailey, D.S.–Shultz, R.C.–Thoman, E.S. (2004b): Update on tilapia and vegetable production in the UVI aquaponic system, New Dimensions on Farmed Tilapia: Proceedings of the Sixth International Symposium on Tilapia in Aquaculture, Manila, Philippines, pp. 676–690. https://cals.arizona.edu/azaqua/ista/ista6/ista6web/pdf/676.pdf
  21. Rakocy, J.E.–Losordo, T.M.–Masser, M.P. (2006): Recirculating aquaculture tank production systems: integrating fish and plant culture, southern region, Aquacul. Center Pub., 454, pp. 1–16. https://shareok.org/bitstream/handle/11244/319795/oksd_srac_454_2016-07.pdf?sequence=1
  22. Rakocy, J.E. (2012): Chapter 14: Aquaponics - integrating fish and plant culture, J.H. Tidwell (Ed.), Aquaculture Production Systems, Wiley-Blackwell, Oxford, UK, pp. 344–386. https://doi.org/10.1002/9781118250105.ch14
  23. Rastegari, H.–Nadi, F.–Su Shiung, L.–Ikhwanuddin, M.–Kasan, N.A.–Rahmat, R.F.–Wan Mahari, W.A. (2023): Internet of Things in aquaculture: A review of the challenges and potential solutions based on current and future trends, Smart Agricultural Technology 4 100187, https://doi.org/10.1016/j.atech.2023.100187
  24. Roosta, H.R.–Hamidpour, M. (2011): Effects of foliar application of some macro- and micro-nutrients on tomato plants in aquaponic and hydroponic systems, Scientia Horticulturae, Volume 129, Issue 3, 27 June 2011, Pages 396–402., https://doi.org/10.1016/j.scienta.2011.04.006
  25. Roosta, H.R. (2014): Comparison of the vegetative growth, eco-physiological characteristics and mineral nutrient content of basil plants in different irrigation ratios of hydroponic: aquaponic solutions J. Plant Nutr., 37, pp. 1782-1803., https://doi.org/10.1080/01904167.2014.890220
  26. Santos, M.J.P.L. (2016): Smart cities and urban areas - Aquaponics as innovative urban agriculture, Urban forestry and urban greening 20 402–406. https://doi.org/10.1016/j.ufug.2016.10.004
  27. Suhl, J.–Dannehl, D.–Kloas, W.–Baganz, D.–Jobs, S.–Scheibe, G.–Schmidt, U. (2016): Advanced aquaponics: Evaulation of intensive tomato production in aquaponics vs. conventional hydroponics, Agricultural Water Management, 178. 335–344. https://doi.org/10.1016/j.agwat.2016.10.013
  28. Saha, S.–Monroe, A.–Day, M.R. (2016): Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems, Annals of Agricultural Science 61 181–186., https://doi.org/10.1016/j.aoas.2016.10.001
  29. Seawright, D.E.–Stickney, R.R.–Walker, R.B. (1998): Nutrient dynamics in integrated aquaculture–hydroponics systems, Aquaculture, Volume 160, Issues 3–4, 30 January 1998, Pages 215–237., https://doi.org/10.1016/S0044-8486(97)00168-3
  30. Schneider, O.–Sereti, V.–Eding, E.H.–Verreth, J.A.J. (2005): Analysis of nutrient flows in integrated intensive aquaculture systems, Aquacultural Engineering, Volume 32, Issues 3–4, April 2005, Pages 379–401., https://doi.org/10.1016/j.aquaeng.2004.09.001
  31. Shang, Y.C. (1981): Aquaculture economics: basic concepts and methods of analysis Westview Press, London 153. https://cir.nii.ac.jp/crid/1130000795157167488
  32. Vieira, R.F.–Simon, J.E. (2000): Chemical Characterization of basil (Ocimum Spp.) found in the markets and used in traditional medicine in Brazil, Economic Botany volume 54, pages 207–216 https://doi.org/10.1007/BF02907824.
  33. Wang, C.–Li, Z.–Wang, T.–Xu, X.–Zhang, X.–Li, D. (2021): Intelligent fish farm—the future of aquaculture, Aquaculture International volume 29, pages 2681–2711., https://link.springer.com/article/10.1007/s10499-021-00773-8