Search

Published After
Published Before

Search Results

  • The role of green manure crops in Hungarian plant production
    49-53
    Views:
    241

    According to the data of KSH (Hungarian Central Statistical Office), the sowing area of cereals in the crop year 2016 was over 2.56 million ha, on which winter wheat and maize were produced in a rate of around 50–50%. Regarding these data it is obvious that the domestic cropping structure has been simplified and become unilateral. This unfavourable crop rotation system causes several problems. The number of Hungarian livestock decreased in the past decades. The amount of manure was 24 million tons in 1960, but only hardly 4.5 million tons of organic manure was applied in 2016. Therefore, the importance of other possibilities, alternatives for organic matter recovery have become enhanced. This is especially important from the aspect of sustainable plant production. The fact that the European Union has introduced new directives for subsidiaries in 2015 has to be noted as well.

    The objective of the set experiment is to find new technological solutions that are suitable for the execution of sustainable plant production by inadequate crop rotation, organic substance recovery conditions or under more unfavourable climatic conditions.

  • Genetic progress in winter wheat quality and quantity parameters
    71-75
    Views:
    164

    Wheat production is significant branch of Hungarian crop production (with about 1 million hectares of sowing area). Weather anomalies resulted by climate change have increased the importance of biological basis in wheat production. Yield quality and quantity parameters of three wheat genotypes sown on chernozem soil type after maize pre-crop were studied in a long-term field experiment. Yield amount of the studied genotypes varied between 2894 and 8074 kg ha-1 in 2017 and between 5795 and 9547 kg ha-1 in 2018 depending on the applied treatments. Based on our results it can be stated that in both studied crop years the highest yield increment was realized by the application of the nutrient supply level of N30+PK. As the result of the application of the optimum mineral fertilizer level – in contrast to the control – resulted in significant yield increment in both crop years. The results of the long-term field experiment prove that water utilization of the studied wheat varieties / hybrids was improved by the application of the optimal nutrient supply. Furthermore, the water utilization of the latest genotypes was more favorable by both the control and the optimum nutrient supply level treatments. Analyzing the quality parameters of winter wheat using the NIR method it has been stated that the quality results of the well-known genotype (GK Öthalom) were better than those of the new genotypes. A negative correlation between winter wheat quality and quantity parameters has also been confirmed. As the result of the mineral fertilizer application protein and gluten content of winter wheat increased to a significant extent.

  • Comparative study of a winter wheat variety and hybrid sown after different pre-crops on chernozem soil
    63-69
    Views:
    243

    Wheat production is a determining branch within Hungarian crop production (produced on nearly one million hectares). Weather anomalies caused by climatic change confirmed the importance of the biological background (variety, hybrid) in wheat production. The adapting ability and reaction of different wheat genotypes towards nutrient supply were studied in a long-term field experiment on chernozem soil type in the case of different pre-crops (sunflower and maize). According to the experimental results of the vegetation of 2017/2018, the yield of the variety Ingenio sown after the sunflower as previous crop ranged between 4168 and 8734 kg ha-1, while in the case of maize as previous crop, this value ranged between 2084 and 7782kg ha-1, depending on the applied nutrient supply level. The studied genotypes produced rather significant yield surplus as a response to the application of mineral fertilization (4.6–5.1 t ha-1 after sunflower and 5.7–6.3 t ha-1 after maize). Optimal mineral fertilizer dosage was determined by both the genotype and the pre-crop. N-optimum values of wheat genotypes was determined using regression analysis. In the case of the variety Ingenio sown after sunflower, the optimum range was N144-150+PK, while after maize, it was
    N123-150+PK, respectively. For the hybrid Hyland, these optimum ranges were N114-120+PK, just as N150-153+PK, resp. The application of optimal mineral fertilizer dosages improved water utilization of the studied wheat genotypes to a significant extent. WUE values of the control, unfertilized treatments ranged between 4.1–8.3 kg mm-1, while in optimal fertilizer treatment, it ranged between 15.5 and 17.4 kg mm-1.