Articles

Performance of agricultural factors on yield of  sweet corn (Zea mays L. Saccharata ) - A review

Published:
2024-06-03
Authors
View
Keywords
License

Copyright (c) 2024 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Sidahmed, H. M. I., Illés, Árpád, ALmahi, A., & Nagy, J. (2024). Performance of agricultural factors on yield of  sweet corn (Zea mays L. Saccharata ) - A review. Acta Agraria Debreceniensis, 1, 143-156. https://doi.org/10.34101/actaagrar/1/12830
Received 2023-04-30
Accepted 2023-10-12
Published 2024-06-03
Abstract

 Sweet corn producers and industries require more reliable cultivars which could be accomplished by hybrid breeding. However, progressive phenological growth may be affected by different factors. In this paper, we analyze the key factors that determine the growth and yield of sweet corn. Environmental factors such as temperature and photoperiod were strong determinants of dates of flowering and harvest which are often crucial to yield in diverse climates and agricultural systems, besides the country's pedological conditions, especially soil fertility, affected phenological development. The effectiveness of fertilization in improving sweet corn growth performance was significantly influenced by the soil characteristics, the water supply, the genotype, and the agrotechnological factors. Therefore, genetic improvement of hybrids should be incorporated into the climate and soil elements to stabilize sweet corn yields in various agroecosystems. Decisions made in the sowing period are very significant, as up to 30% of the obtained yield may depend on making the proper choice. Deviation from the optimum date (either early or late sowing) may decrease yield. When deciding about the sowing date of maize, one needs to consider climate, soil quality, geographical location, temperature, weed infestation, sowing seed quality, and the ripening time of the hybrid to be produced.

References
  1. Abadi, W.; Sugiharto, N. (2019): Uji keunggulan beberapa calon varietas hibrida jagung manis (Zea mays L. var. saccharata) Jurnal Produksi Tanaman, 7, no. 5, pp. 939–948.
  2. Abdel-Rahman, A.M.; Lazim Magboul, E. (2002): Effects of sowing date and cultivar on the yield and yield components of maize in northern Sudan. Proc. 7th Eastern and Southern Africa Regional Maize Conference, Nairobi, Kenya, 11–15 Feb. p. 295–298.
  3. Abendroth, L.J.; Elmore, R.W. (2011): Corn Growth and Development. Iowa State University Extension, Ames, IA.
  4. Akintoye, H.A.; Olaniyan, A.B. (2012): The yield of sweet corn in response to fertilizer sources. Global Advan. Res. J. Agric. Sci, 1(5): 110–116.
  5. Alan, O.–Kinaci, G. (2014): Kernel quality of some sweet corn varieties in relation to processing. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42(2):414–419. https://doi.org/10.1583/nbha4229425.
  6. An, M.; Pratley, J.E.; Haig, T. (2001): Phytotoxicity of Vulpia Residues: III. Biological Activity of Identified Allelochemicals from Vulpia myuros. J Chem Ecol 27, 383–394. https://doi.org/10.1023/A:1005640708047.
  7. Arshad, A.M.; Rawayau, H.W. (2015): The potential impact of different organic manure sources and Arbuscular Mycorrhizal Fungal Inoculation on growth performance of sweet corn grown on BRIS soil. International Journal of Development and Sustainability, 6 (8), 641–649.
  8. Asthir, B. (2015): Protective mechanisms of heat tolerance in crop plants. J Plant Interact 10:202–210.
  9. Azanza, F.– Klein, B. P. (1996): Sensory characterization of sweet corn lines differing in physical and chemical composition, Journal of Food Science, vol. 61, no. 1, pp. 253–257.
  10. Aziz, M.M.; Nawaz, R. (2019): Starch composition, antioxidant potential, and glycemic indices of various Triticum aesitivum L. and Zea mays L. varieties are available in Pakistan. J. Food Biochem., 43, e12943. [CrossRef].
  11. Baenziger, P.S.; Glover, D.V. (1980): Effect of reducing plant population on yield and kernel characteristics of Sugary-2 and normal maize. Crop Sci.; 20: 444–447.
  12. Barbieri, V.H.B.; Luz, J.M.Q. (2005): Produtividade e rendimento industrial de híbridos de milho doce em função de espaçamento populações de plantas. Horticultura Brasileira, 23, 826–830.
  13. Barros-Rios, J.; Romaní, A.; Garrote, G.; Ordás, B.J. (2015): Biomass, sugar, and bioethanol potential of sweet corn. GCB Bioenergy 7, 153–160, doi 10.1111/gcbb.12136.
  14. Becker, H.C.; Leon, J. (1988): Stability analysis in plant breeding. Plant Breeding 101:1–23.
  15. Bird, I.F.; Cornelius, M.J. (1977): Effects of temperature on photosynthesis by maize and wheat. J. Exp. Bot. 28, 519–524.
  16. Bita, C.E.; Gerats, T. (2013): Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat-stress-tolerant crops. Front Plant Sci. 4:273.
  17. Blum, A. (2009): Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res.; 112: 119–123.
  18. Borras, L.; Otegui, M.E. (2001): Maize kernel weight response to post-flowering source-sink ratio. Crop Sci. 41: 1816–1822.
  19. Boydston, R.A.; Williams, M.M. (2015): Sweet corn hybrid tolerance to weed competition under three weed management levels. Renewable Agriculture and Food Systems: 31(4); 281–287. DOI:10.1017/S1742170515000204
  20. Boyer, C.; Shannon, J.C. (1984): The use of endosperm genes for sweet corn improvement. In: Janick, J. (ed) Plant breeding reviews, vol 1. Wiley, Hoboken, pp 139–161.
  21. Brust, G.; Egel, D.S. (2003): Organic vegetable production. Purdue University Extension Publication ID-316. Retrieved from https://www.extension.purdue.edu/extmedia/ID/ ID_316.pdf.
  22. Budak, F.; Aydemir, S.K. (2018): Grain yield and nutritional values of sweet corn (Zea mays var. saccharata) in produced with good agricultural implementation. Nutrition and Food Science International Journal 7(2):1–5. https://doi.org/10.19080/NFSIJ.2018.07.555710.
  23. Bundy, L.G.; Andraski, T.W. (2005): Recovery of Fertilizer Nitrogen in Crop Residues and Cover Crops on an Irrigated Sandy Soil. Soil Sci. Soc. Am. J. 69, 640–648. [CrossRef].
  24. Bunting, E.S. (1973): Plant density and yield of grain maize in England. J Agric Sci.; 81: 455–46.
  25. Cabrera-Soto, L.; Pixley, K.V. (2018): Carotenoid and chromanol profiles during kernel development make consumption of biofortified “fresh” maize an option to improve micronutrient nutrition. J Agric Food Chem. 66:9391–9398.
  26. Calvo-Brenes, P.; Fanning, K.; O'Hare, T. (2019): Does kernel position on the cob affect zeaxanthin, lutein, and total carotenoid contents or quality parameters, in zeaxanthin-biofortified sweetcorn. Food Chemistry. 277. 490–495.
  27. Canatoy, R.C. (2018): Dry matter and NPK uptake of sweet corn as influenced by fertilizer application. Asian J. Soil Sci. & Plant Nutr. 3. 1–10.
  28. Carlone, M.; Russell, W.A. (1987): Response to plant densities and nitrogen levels for four maize cultivars from different eras of breeding. Crop Sci. 27, 465–470.
  29. Chhabra, R.; Hossain F. (2019): Mapping and validation of Anthocyanin1 pigmentation gene for its effectiveness in the early selection of shrunken2 gene governing kernel sweetness in maize. J Cereal Sci 87:258–265.
  30. Chhabra, R.; Hossain, F. (2020): Development and validation of gene-based markers for shrunken2-Reference allele and their utilization in marker-assisted sweet corn (Zea mays Sachharata) breeding program. Plant Breed. 139:1135–1144.
  31. Chiang, H.C. (1973): Bionomics of the northern and western corn rootworms. Annu. Rev. Entomol. 18, 47–72. https://doi.org/10.1146/annurev.en.18.010173.000403.
  32. Chinnusamy, V.; Zhu, J.; Zhu, J.K. (2007): Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451.
  33. Chozin, M.; Sudjatmiko, S.; Muktamar, Z.; Setyowati, N.; Fahrurrozi, F. (2019): 6th International Conference on Sustainable Agriculture, Food and Energy IOP Conf. Series: Earth and Environmental Science 347. 012007 IOP Publishing doi:10.1088/1755-1315/347/1/012007.
  34. Cox, W.J. (1996): Whole-plant physiological and yield responses of maize to plant density. Agron J; 88: 489–496.
  35. Creech, R.G. (1965): Genetic control of carbohydrate synthesis in maize. Genetics 52:1175–1186.
  36. Culy, M.D.–Edwards, C.R. (1992): Minimum Silk Length for Optimum Pollination in Seed Corn Production Fields. Journal of Production and Agricultural. 5, issue 3, 295–413.
  37. Dale, R.F. (1983): Temperature perturbations in the Midwestern and Southeastern United States important for corn production. In: C. D. Raper, and P. J. Kramer (eds), Crop Reactions to Water and Temperature Stresses in Humid Temperature Climates, Westview Press, Boulder, CO, USA. 21–32.
  38. Darby, H.M.; Lauer, J.G. (2002): Harvest date and hybrid influence on yield, quality, and preservation of corn forage yield. Agron J. 94: 559–66.
  39. Darwin, H.P.; Sarno, Y.L. (2020): Effects of Chicken Compost and KCl Fertilizer on Growth, Yield, Post-Harvest Quality of Sweet Corn, and Soil Health. AGRIVITA Journal of Agricultural Science. 42(1): 131–142.
  40. Datta, D.; Chandra, S. (2019): Yield and quality of sweet corn under varying irrigation regimes, sowing methods, and moisture conservation practices. J. Pharmacogn. Phytochem. 8, 1185–1188.
  41. Demirel, R.; Fatih, A. (2011): The determination of qualities in different whole-plant silages among hybrid maize cultivars. Afr J Agric Res; 6: 5469–74.
  42. Dhaliwal, D.S.; Ainsworth, E.A.; Williams, M.M. (2021): Historical Trends in Sweet Corn Plant Density Tolerance Using Era Hybrids (1930–the 2010s) Front. Plant Sci., 22. September 2021 https://doi.org/10.3389/fpls.2021.707852.
  43. Dia, M.; Wehner, T.C.; Hassell, R. (2016): Genotype Environment interaction and stability analysis for watermelon fruit yield in the United States. Crop Sci. 56:1645–1661.
  44. Diacono, M.; Montemurro, F. (2010): Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev, 30, 401–422. [CrossRef].
  45. Diver, S.; Kuepper, G. (2001): Organic sweet corn production. ATTRA Cooperative Service USDA. 28 pages.
  46. Division of Extension University of Wisconsin-Madison, (2014): Methods for Determining corn pollination success. URL http://corn.agronomy.wisc.edu/Management/L018. aspx. (Accessed May 2020).
  47. Dupont. (2003): Accent® 75 DF herbicide. 25116- 20030731-F2 E Label. Dupont Canada Inc. 13.
  48. Duvick, D. (2005): The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 86, 83–145.
  49. Duvick, D.N. (1997): What is a yield. In Edmeades GO, Bänziger B, Mickelson HR, Pena-Valdivia CB, Editors. Developing drought and low N-tolerant maize. Mexico: CIMMYT, El Batan. pp. 332–335.
  50. Duvick, D.N. (2005): Genetic progress in yield of United States maize (Zea mays L.). Maydica.; 50: 193– 202.
  51. Duvick, D.; Smith, J.S. (2004): Long-term selection in a commercial hybrid maize breeding program. In: Janick, J. (Ed.), Plant Breeding Reviews. Wiley, New York, pp. 109–151.
  52. Dwyer, L.M.; Tollenaar, M. (1991): Changes in plant-density dependence of leaf photosynthesis of maize (Zea mays L) hybrids, 1959 to 1988. Can J Plant Sci.; 71: 1–11.
  53. El-Hamed, K.; Elwan, M. (2012): Enhanced sweet corn propagation: Studies on transplanting feasibility and seed priming. Vegetable Crops Research Bulletin 75:31–50. https://doi.org/10.2478/v10032-011-0016-4.
  54. El-Sawah, A.M.; Ali, D.F.I. (2020): The integration of bio and organic fertilizers improves plant growth, grain yield, quality, and metabolism of hybrid maize (Zea mays L.) Agronomy, 10, 319. [CrossRef].
  55. Eunsoo, C. (2016): Identification of Crowding Stress Tolerance Co-Expression Networks Involved in Sweet Corn Yield. PLOS ONE | DOI:10.1371/journal.pone.0147418.
  56. Fahrurrozi, (2019): Phosphorus Uptakes and Yields of Sweet Corn Grown Under Organic Production System. 6th International Conference on Sustainable Agriculture, Food and Energy IOP Conf. Series: Earth and Environmental Science 347 012006 IOP Publishing doi:10.1088/1755-1315/347/1/012006.
  57. Fahrurrozi, M. (2016): Growth and yield responses of three sweet corn (Zea mays L. var. saccharate) varieties to local-based liquid organic fertilizer. Int. J. Adv. Sci. Eng. Inform. Tech. 6. 319–23.
  58. Fathi, A.; Tari, D.B. (2016): Effect of drought stress and its mechanisms in plants. Int J Life Sci., 10(1):1–6.
  59. Feng, Z.L.; Liu, J. (2008): Molecular mechanism of sweet and waxy in maize. Int J Plant Breed Genet 2:93–100.
  60. Ferguson, R.B.; Hergert, G. (2002): Site-specific nitrogen management of irrigated maize. Soil Sci. Soc. 66, 544–553.
  61. Ferraretto, L.F.; Fonseca, A.C. (2015): Effect of corn silage hybrids differing in starch and neutral detergent fiber digestibility on lactation performance and total-tract nutrient digestibility by dairy cows. J Dairy Sc; 98:395–405.
  62. Foth, H.D.; Ellis, B.G. (1997): Soil fertility (2nd ed.). Boca Raton: CRC Press.
  63. Gao, L.; Li, W.; Ashraf, U.; Lu, W.; Li, Y.; Li, C.; Li, G.; Li, G.; Hu, J. (2020): Nitrogen Fertilizer Management and Maize Straw Return Modulate Yield and Nitrogen Balance in Sweet Corn. Agronomy, 10, 362; doi:10.3390/agronomy10030362.
  64. Gavrić, T.; Omerbegovic, O. (2021): Effect of transplanting and direct sowing on productive properties and earliness of sweet corn. Chilean journal of agricultural research 81(1) January-March 2021.
  65. Geerts, S.; Raes, D. (2009): Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management, 96. 1275–1284.
  66. Ghimire, S.; Scheenstra, E.; Miles, C.A. (2020): Soil-biodegradable Mulches for Growth, Yield, and Quality of Sweet Corn in a Mediterranean-type Climat. Hortscience 55(3):317–325. https://doi.org/10.21273/HORTSCI14667-19.
  67. Ghosh, D.; Brahmachari, K. (2020): Nutrient supplementation through organic manures influences the growth of weeds and maize productivity. Molecules 25:4924. https://doi.org/10.3390/molecules25214924.
  68. Hammad, H.M.; Ahmad, A. (2011): Optimizing water and nitrogen use for maize production under semiarid conditions. Pak. J. Bot. 43.2919–2923.
  69. Hamzaoui-Essoussi, L.; Zahaf, M. (2012): The organic food market: Opportunities and challenges. In Organic Food and Agriculture-New Trends and Developments in the Social Sciences, Ed. Reed M. (Rijeka, Croatia: InTech) p 63–88.
  70. Harper, F. (1999): Principles of arable crop production. Blackwell Science, London, UK.
  71. Hassell, R.L.; Dufault, R.J. (2003): Low-temperature germination response of su, se, and sh2 sweet corn cultivars. HortTechnology 13(1):136–141. https://doi.org/10.21273/horttech.13.1.0136.
  72. Hay, R.K.M. (1986): Sowing date and the relationships between plant and apex development in winter cereals. Field Crops Res. 14:321–337.
  73. Herbek, H. (1986): Tillage system and date of planting effects on yields of corn on soils with restricted drainage. Agron. J. 78:824–826.
  74. Heshemi, N.; Seyed, M. (2017): The effects of drought and heat stress on some physiological and agronomic characteristics of new hybrids of corn in the north of Khuzestan Province (Iran). EurAsian Journal of BioSciences 11:32–36.
  75. Hussain, H.A.–Hussain, S. (2018): Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci., 9(April):1–21.
  76. James, M.G.; Robertson, D.S. (1995): Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell, 7:417–429.
  77. Jin, X. et al. (2015): Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence, and sugar-nitrogen ratio in corn. Scientific Reports, London, 5, s/n. 1–9.
  78. Kaiser, D.; Fernandez, F. (2018): Fertilizing Corn in Minnesota; the University of Minnesota Extension: Saint Paul, MN, USA.
  79. Karlen, D.L.; Camp, C.R. (1985): Row spacing, plant-population, and water management effects on corn in the Atlantic coastal plain. Agron J.; 77: 393–398.
  80. Kong, H. M.; He, Y.Q. (2004): Effect of Long-Term Fertilization on Crop Yield and Soil Fertility of Upland Red Soil. Chinese Journal of Applied Ecology, 15, 782–786.
  81. Krawiec, D.; Hunek, A. (2018): The use of physical factors for seed quality improvement of horticultural plants. J. Hort. Res., 26, 81–94. [CrossRef].
  82. Kumar, A.; Pramanick, B. (2019): Growth, yield, and quality improvement of flax (Linum usitattisimum L.) grown under tarai region of Uttarakhand, India through integrated nutrient management practices. Ind Crop Prod 140:111710. https://doi.org/10.1016/j.indcrop.2019.111710 8.
  83. Kwiatkowski, A.; Clemente, E. (2007): Características do milho doce (Zea mays L.) para industrialização. Revista Brasileira de Tecnologia Agroindustrial 1: 93–103.
  84. Lee, C.D.; Lacefield, G. (2005): Producing corn for silage [Internet]. University of Kentucky Cooperative Extension Service; 2005 [cited 2018 Feb 23]. Available from: http://www2.ca.ukyedu/agcomm/pubs/agr/agr79/agr79.pd.
  85. Lertrat, K.; Pulam, T. (2007): Breeding for increased sweetness in sweet corn. Int J Plant Breed 28:27–30.
  86. Li, Y.; Hu, J.; Liu, J.; Suo, H.; Yu, Y.; Han, F. (2015): Genome-wide analysis of gene expression profiles during early ear development of sweet corn under heat stress. Plant Breeding, 134, 17–27 https://doi.org/10.1111/pbr.12235 © 2014 Blackwell Verlag GmbH.
  87. Litterick, A.M.; Harrier, L.; Wallace, P.; Watson, C.A.; Wood, M. (2004): The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production- a review. Plant Sci. 23:453-479.
  88. Lobell, D.B.; Roberts, M. (2014): Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science 344, 516–519.
  89. Lu’quez, J.E.; Aguirrez, L.A.N. (2002): Stability and adaptability of cultivars in non-balanced yield trials: Comparison of methods for selecting ‘high oleic’ sunflower hybrids for grain yield and quality. J. Agron. Crop Sci. 188:225–234.
  90. Makus, D. (2000): Performance of two sweet cultivars grown under conservation tillage and with-in-row weed pressure. Subtropical Plant Science, 52:18–22.
  91. Mallarino, A.P.; Bergmann, N. (2011): Corn responses to in-furrow phosphorus and potassium starter fertilizer applications. Agronomy Journal, 103(3), 685–694 https://doi. org/10.2134/agronj2010.0377
  92. Manan, M.C.; Swarup, A. (2005): Long-term effect of Fertilizer and Manure Application on Soil Organic Carbon Storage, Soil Quality and Yield Sustainability Under Sub-Humid and Semi-Arid Tropical India. Filed Crops Research, 93: 264-280.
  93. Mansfield, B.D.; Mumm, R.H. (2014): Survey of plant density tolerance in US maize germplasm. Crop Sci.; 54: 157–173.
  94. Marshall S.W.; Tracy, W.F. (2003): Sweet corn. In: Corn: Chemistry and Technology, 2nd edn (eds White PJ, Johnson LA), American Association of Cereal Chemists Inc., St. Paul, Minnesota, USA. pp. 537–569.
  95. Marshall, S.W.; Tracy, W.F. (2003): Sweet corn. In: White, P. J.; Johnson, L. A. (Ed.). Corn: chemistry and technology. 2. ed. Saint Paul: American Association of Cereal Chemists. p. 537–569.
  96. Mengel, K.; Kirkby, E.A. (2001): Principles of plant nutrition (5th ed.) Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-010- 1009-2.114.
  97. Mingwei, Y. (2017): Adaption of the AmaizeN model for nitrogen management in sweet corn (Zea mays L.). Field Crops Research 209. 27–38.
  98. Mohammed, Y.A.C.; Chen, K. (2016): Yield performance and stability of dry pea and lentil genotypes in semi-arid cereal dominated cropping systems. Field Crops Res. 188:31–40.
  99. Mubarak, I. (2020): Triple-row system with a wider drip-line lateral spacing for two drip-irrigated sweet corn cultivars. Pesq. Agro pec. bras., 55, e01684, DOI: 10.1590/S1678-3921.pab2020.v55.01684.
  100. Muchtar, A.N.W.; Andi, I (2020): The effect of fertilizing residues on growth and yield of sweet corn. ICFST 2019 IOP Conf. Series: Earth and Environmental Science 484 (2020) 012078 IOP Publishing doi:10.1088/1755-1315/484/1/012078.
  101. Muktamar, Z.; Fahrurrozi, F. (2016): Selected macronutrient uptake by sweet corn under different rates of liquid organic fertilizer in Closed Agriculture System. Int. J. Adv. Sci. Eng. Inform. Tech. 6, 258-61.
  102. Muktamar, Z.; Sudjatmiko, S. (2017): Sweet Corn Performance and Its Major Nutrient Uptake Following Application of Vermicompost Supplemented with Liquid Organic Fertilizer Int. J. Adv. Sci. Eng. Inform. Tech. 7, 602-8.
  103. Nahid, J.; Deepti, P. (2010): Basis of limited-transpiration rate under elevated vapor pressure deficit and high temperature among sweet corn cultivars. Environmental and Experimental Botany 179 (2020) 104205.
  104. Nahid, J.; Deepti, P. (2020): Sweet corn nitrogen accumulation, leaf photosynthesis rate, and radiation use efficiency under variable nitrogen fertility and irrigation. Field Crops Research, 257, 15 October 2020, 107913.
  105. Nemeskéri, E.; Molnár, K.; Rácz, C.; Dobos, A.C.; Helyes, L. (2019): Effect of Water Supply on Spectral Traits and Their Relationship with the Productivity of Sweet Corn. Agronomy, 63; doi:10.3390/agronomy9020063.
  106. Nordby, J.N.; Williams, M.M. (2008): A common genetic basis in sweet corn inbred Cr1 for cross-sensitivity to multiple cytochrome P450-metabolized herbicides. Weed Sci. 56:376–382.
  107. Oares, J.C.; Santos, C.S. (2019): Preserving the nutritional quality of crop plants under a changing climate: importance and strategies. Plant Soil.; 443(1–2):1–26.
  108. O'Hare, T.J.; Martin, I. (2014): Sweetcorn color change, and consumer perception associated with increasing zeaxanthin for the amelioration of age-related macular degeneration. 10.17660/ActaHortic.2014.1040.30.
  109. Ojeniyi, S.O.; Akanni, D.I.; Awodun, M.A. (2007): Effect of goat manure on some soil properties and growth, yield, and nutrient status of tomato (Lycopersicon lycopersicum). University of Khartoum Journal of Agricultural Sciences, 15, 396–405.
  110. Oktem, A.; Oktem, A.G. (2004): Determination of sowing dates of sweet corn (Zea mays L. saccharata Sturt.) under Sanliurfa conditions. Turk. J. Agr. For. 28:83–91.
  111. Okumura, R.S. et al. (2014): Effects of nitrogen rates and timing of nitrogen topdressing applications on the nutritional and agronomic traits of sweet corn. Journal of Food, Agriculture, and Environment, Helsinki, 12, n. 2, p. 391–398.
  112. Pajic, Z.; Dukanovic, L. (2004): Effects of endosperm mutants on maize seed germination. Genetika, 36(3):265–270.
  113. Pareja-Sánchez, E.; Cantero-Martínez, C. (2020): Impact of tillage and N fertilization rate on soil N2O emissions in irrigated maize in a Mediterranean agroecosystem. Agric. Ecosyst. Environ., 287. [CrossRef].
  114. Pataky, J.K. (1992): Relationships between the yield of sweet corn and northern leaf blight caused by Exserohilum turcicum. Phytopathology, 82:370–375.
  115. Pataky, J.K.- M.M. Williams, (2011): Observations from a quarter century of evaluating reactions of sweet corn hybrids to disease nurseries. Plant Dis. 95:1492–1506.
  116. Ping, F.H.; Yao, T.C. (2020): Long-Term Effects of Fertilizers with Regional Climate Variability on Yield Trends of Sweet Corn. Sustainability, 12, 3528; doi:10.3390/su12093528.
  117. Prasad, R.; Hochmuth, G.J. (2016): Environmental Nitrogen Losses from Commercial Crop Production Systems in the Suwannee River Basin of Florida. PLoS ONE, 11, e0167558. [CrossRef].
  118. Purnomo, J.; Subiksa, I.G.M. (2021): Effect of P fertilizer formula on the growth and yield of sweet corn on peatland. 1st International Conference on Sustainable Tropical Land Management IOP Conf. Series: Earth and Environmental Science 648 (2021) 012194 IOP Publishing doi:10.1088/1755-1315/648/1/012194.
  119. Qi, X.; Zhao, Y.; Jiang, L.; Cui, Y. (2009): QTL analysis of kernel soluble sugar content in super-sweet corn. African Journal of Biotechnology, 8: 6913-6917.
  120. Qiu, S.; Xie, J. (2014): Long-term effects of potassium fertilization on yield, efficiency, and soil fertility status in a rain-fed maize system in northeast China. Field Crops Research, 163, 1–9. https:// doi.org/10.1016/j.fcr.2014.04.016.
  121. Rajmani, K. (2012): Effect of Silica on Rice (Oryza sativa L.) yield and its uptake under different levels of nitrogen application. Ph.D. A thesis submitted to Acharya N. G. Ranga Agricultural University. Hyderabad, India.
  122. Ramadoss, M.; Birch, C.J.; Carberr, P.S. (2004): Water and high-temperature stress effects on maize production. In: Fischer et al. New Directions for a Diverse Planet: Proc 4th International Crop Science Congress. Brisbane, Australia, 26 Sept. to 1 Oct.
  123. Rattin, J.; Molinari, J. (2018): Tools for improving sweet corn yield. International Journal of Advances in Agriculture Sciences 3(10):1–14.
  124. Raza, A.; Razzaq, A. (2019): Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants.;8(2):34.
  125. Robertson, G.P.; Vitousek, P.M. (2009): Nitrogen in Agriculture: Balancing The Cost of An Essential Resource. Annual Review of Environment and Resources, 34: 97–125.
  126. Rosa, R. (2015): Quality of sweet corn yield depending on winter catch crops and weed control method. Acta Sci. Pol. Hortorum Cultu, 14, 59–74.
  127. Rosen, C.J.; Crants, J. (2017): Establishing Nitrogen Credits Following a Sweet Corn Crop; Minnesota Department of Agricultural Grant Report: Saint Paul, MN, USA.
  128. Ruswandi, D.; Yuwarian, Y. (2020): Stability and Adaptability of Yield among Earliness Sweet Corn Hybrids in West Java, Indonesia.
  129. Safiullah, K.; Durani, A.; Durrani, H. (2018): Influence of different rates of solid manure and types of liquid organics on yield, nutrient content, and uptake of sweet corn under South Gujarat condition. International Journal of Chemical Studies, 6 (2), 3304- 3310.
  130. Santos, P.H.A.D.; Pereira, M.G.; Trindade, R. dos S.; Cunha, K.S. da; Entringer, G.C.; Vettorazzi, C.F. (2014): Agronomic performance of super-sweet corn genotypes in the north of Rio de Janeiro. Crop Breeding and Applied Biotechnology 14: 8–14. Brazilian Society of Plant Breeding. Printed in Brazil.
  131. Schroeder, J.W. (2013): Corn silage management [Internet]. North Dakota State University Extension Service; 2013 [cited 2018 Feb 23]. Available from: https://www.ag.ndsu.edu/pubs/ansci/ dairy/as1253.pdf.
  132. Sharifi, R.S.; Namvar, A. (2016): Effects of time and rate of nitrogen application on phenology and some agronomical traits of maize (Zea mays L.) Biologija, Gedimino, 62, n. 1, p. 35–45.
  133. Silva, P.R.F. (2005): Grain yield and kernel crude protein content increases of maize hybrids with late nitrogen side-dressing. Scientia Agricola, Piracicaba, 62, n. 5, p. 487–492, 2005.
  134. Singh, I.; Langyan, S. (2014): Sweet corn, and corn-based sweeteners. Sugar Tech, 16, p. 144–14.
  135. Sirajuddin, M.; Lasmin, S.A. (2010): Response Growth and yield of sweet corn (Zea mays saccharata S.) at various times of administration of Nitrogen fertilizer and thickness of straw mulch. Agroland Journal, 17: 184–191. (in Indonesia).
  136. So, Y.F.; Williams, M.M. II.; Pataky, J.K. (2009): Principal canopy factors of sweet corn and relationships to competitive ability with wild-proso millet (Panicum illicium). Weed Sci. 57:296–303.
  137. Spike, B.P.; Tollefson, J.J. (1989): Relationship of root ratings, root size, and root regrowth to yield of corn injured by western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 82, 1760–1763. https://doi.org/10.1093/jee/ 82.6.1760.
  138. Stamatiadis, S.; Werner, M. (1999): Field Assessment of Soil Quality as Affected by Compost and Fertilizer Application in A Broccoli Field (San Benito County, California). Applied Soil Ecology. 12: 271-225.
  139. Subaedah, S.; Edy, E. (2021): Growth, Yield, and Sugar Content of Different Varieties of Sweet Corn and Harvest Time. Hindawi International Journal of Agronomy, Volume 2021, Article ID 8882140, 7 pages https://doi.org/10.1155/2021/8882140.
  140. Surtinah, S. (2020): Increasing Sweet Corn Production: Fertilizing Zea Mays Saccharata, Sturt Context in Pekanbaru. Indonesia. International Conference on Environment and Technology IOP Conf. Series: Earth and Environmental Science 469 012114.
  141. Szymanek, M. (2009): Influence of sweet corn harvest date on kernel quality. Research in Agricultural Engineering 55(1):10–17 DOI 10.17221/13/2008-RAE.
  142. Szymanek, M.B.; Dobrzañski, J. (2005): Sweetcorn, Harvest and Technology, Physical Properties and Quality. Centre of Excellence Agrophysics for Applied Physics in Sustainable Agriculture; B. Dobrzański Institute of Agrophysics of Polish Academy of Sciences, Poland, pp:234.
  143. Szymanek, M.; Tana´s, W. (2015): Kernel Carbohydrates Concentration in Sugary-1, Sugary Enhanced and Shrunken Sweet Corn Kernels. Agric. Agric. Sci. Procedia, 7, 260–264. [CrossRef].
  144. Tabakovic, M.; Simic, M. (2020): Effects of shape and size of hybrid maize seed on germination and vigor of different 159-genotypes. Chilean Journal of Agricultural Research 80:381–392. https://doi:10.4067/S0718-58392020000300381.
  145. Tardieu, F. (2003): Virtual plants: modeling as a tool for the genomics of tolerance to water deficit. Trends Plant Sci.; 8: 9–14. PMID: 12523994.
  146. Tardieu, F.; Tuberosa, R. (2010): Dissection and modeling of abiotic stress tolerance in plants. Curr Opin Plant Biol.; 13: 206–212. doi 10.1016/j.pbi.2009.12.012 PMID: 20097596.
  147. Teixeira, F.F.; Sousa, I.R. (2001): Avaliação da capacidade de combinação entre linhagens de milho doce. Ciência e Agrotecnologia 25: 483- 488.
  148. Teng, F.; Zhai, L. (2013): ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J 73(3):405–416.
  149. Termorshuizen, A.J.; van Rijn, E. et al. (2006): Suppressiveness of 18 composts against 17 pathosystems: variability in pathogen response. Soil Biol. Biochem. 38:2461–2477.
  150. Thomas, R.; George, K. (1991): Global warming: Evidence for asymmetric diurnal temperature change. Geophys. Res. Lett., 18, 2253–2256.
  151. Tollenaar, M.; Lee, E.A. (2002): Yield potential, yield stability, and stress tolerance in maize. Field Crops Res.; 75: 161–169.
  152. Toscano, S.; Ferrante, A.; Romano, D. (2019): Response of Mediterranean ornamental plants to drought stress. Horticulture.; 5(1):1–20.
  153. Tracy, W. (1993): Sweet corn, Zea Mays L. In Kalloo, G., Bergh, B.O. (Eds.), Genetic improvement of vegetable crops. Pergamon Press, Oxford, pp. 777–807.
  154. Tracy, W.F. (2001): Sweet corn. In: Hallauer AR (ed) Specialty corns, 2nd. CRC Press, Boca Raton, pp 155–197.
  155. Tracy, W.F.; Whitt, S.R. (2006): Recurrent mutation and genome evolution: example of Sugary1 and the origin of sweet maize. Crop Science, 46: 1–7.
  156. Turemis, N. (2002): The effects of different organic deposits on yield and quality of strawberry cultivar Dorit (216). Acta Hort. 567:507–510.
  157. Ugur, A.; Maden, H.A. (2015): Sowing and planting period on yield and ear quality of sweet corn (Zea mays L. var. saccharata) Ciência Agrotecnologia 39(1):48–57. https://doi.org/10.1590/s1413-70542015000100006.
  158. USDA (2010): US Sweet corn statistics. Economic Research Service (ERS), US Department of Agriculture. Available at: http://usda.mannlib.cornell.edu/MannUsda/ viewDocumentInfo.do?documentID=1564 (accessed 1 September 2013).
  159. USDA-Nass. (2020): United States Department of Agriculture, CropScape—National Agricultural Statistics Service Crop Data Layer Program. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 2 January 2020).
  160. Wangiyana, W.; Farida, N. (2021): Effect of peanut intercropping and mycorrhiza in increasing yield of sweet corn yield. IOP Conf. Series: Earth and Environmental Science 648 -012068 -Western corn rootworm (Coleoptera, Chrysomelidae) on yield and quality of inbred corn in seed corn production fields. J. Econ. Entomol. 85 (6), 2440–2446. https://doi.org/10.1093/jee/85.6.2440.
  161. William, M. (2014): Better sweet corn research, better production. ACES.College of Agricultural, Consumer and Environmental SciencesACES News and Public Affairs.University of Illinois, Urbana, Illinois, USA. http://www.uiuc.edu.
  162. Williams, II. M.M. (2012): Agronomics and economics of plant population density on processing sweet corn. Field Crops Res. 128:55–61.
  163. Williams, M. M., II. (2017): Genotype Adoption in Processing Sweet Corn Relates to Stability in Case Production. HortScience 52(12):1748–1754. 2017. doi: 10.21273/HORTSCI12595-17.
  164. Williams, M.M. (2008): Sweet corn growth and yield responses to planting dates of the North Central United States. HortScience 43(6):1775–1779.
  165. Williams, M.M. (2010): Biological significance of low weed population densities on sweet corn. Agron. J., 102, 464–468. [CrossRef].
  166. Williams, M.M. II.; Boydston, R.A. (2006): Canopy variation among three sweet corn hybrids and implications for light competition. HortScience 41:1449– 1454.
  167. Williams, M.M. II.; Boydston, R.A. (2007): Wild proso millet (Panicum miliaceum) suppressive ability among three sweet corn hybrids. Weed Science 55:245–251.
  168. Williams, M.M. II. (2008): Sweet corn growth and yield responses to planting dates of the north-central United States. HortScience 43:1775– 1779.
  169. Williams, M.M. II.; Boydston, R.A.; Davis, A.S. (2008): differential tolerance in sweet corn to wild-proso millet (Panicum miliaceum) interference. Weed Science 56: 91–96.
  170. Williams, M.M.II. (2015): Identifying crowding stress-tolerant hybrids in processing sweet corn. Agron J.; 107: 1782–1788.
  171. Xoconostle-Cazares, B.; Ramirez-Ortega, F.A.; Flores-Elenes, L.; Ruiz-Medrano, R. (2010): Drought tolerance in crop plants. Am J Plant Physiol.; 5(5):241–56.
  172. Yousef, G.G.; Juvik, J.A. (2002): Enhancement of seedling emergence in sweet corn by marker-assisted backcrossing of beneficial QTL. Crop Science, 42, p. 96–104.
  173. Yuliang, L.; Jianguang, H.; Jianhua, L. (2015): Genome-wide analysis of gene expression profiles during early ear development of sweet corn under heat stress https://doi.org/10.1111/pbr.12235.
  174. Zhang, J.J.; Qin, W. (2009): Effect of Long–Long-term application of Manure and Mineral Fertilizers on Nitrogen Mineralization and Microbial Biomass Paddy Soil During Rice Growth Stages. Plant Soil Environment 55 (3): 101–109.
  175. Zhang, R.F.; Huang, L. (2016): Phenolic content, and antioxidant activity of eight representative sweet corn varieties grown in South China. Int. J. Food Prop, 20, 3043–3055. [CrossRef].
  176. Zhang, Y.; Li, Y.; Wang, Y.; Peng, B. (2011): Correlations and QTL detection in maize family per se and testcross progenies for plant height and ear height. Plant Breed, 130:617–624.
  177. Zheng, Z.P.-Liu, X.H. (2012): QTLs for days to silking in a recombinant inbred line maize population subjected to high and low nitrogen regimes. Genet Mol Res, 11(2):790–798.
  178. Znidarcic, D. (2012): Performance and characterization of five sweet corn cultivars as influenced by soil properties, Journal of Food Agriculture and Environment, 10, no. 1, pp. 495–500.
  179. Zörb, C.; Senbayram, M.; Peiter, E. (2014): Potassium in agriculture - Status and perspectives. Journal of Plant Physiology, 171(9), 656–669. https:// doi.org/10.1016/j.jplph.2013.08.008.
  180. Zublena, J.P.; Baird, J.V. (1991): Nutrient content of fertilizer and organic materials. N.C. Coop. Ext. Serv. Soil Facts. AG-439-18. North Carolina State University (USA).
  181. Zucareli, C.; Bizzarri Bazzo, J.H.; Silva, J.B.; Santiago Costa, D.; Batista Fonseca, I.C. (2018): Nitrogen rates and side-dressing timing on sweet corn seed production and physiological potential. Rev. Caatinga, Mossoró, 31, n. 2, p. 344–351.
  182. Zystro, J.P.; de Leon, N. (2012): Analysis of traits related to weed competitiveness in sweet corn (Zea Mays L.). Sustainability 4:543–560.