Search
Search Results
-
The investigation of students' skills in the process of function concept creation
249-266Views:24Function is a basic concept of mathematics, in particular, mathematical analysis. After an analysis of the function concept development process, I propose a model of rule following and rule recognition skills development that combines features of the van Hiele levels and the levels of language about function [11]. Using this model I investigate students' rule following and rule recognition skills from the viewpoint of the preparation for the function concept of sixth grade students (12-13 years old) in the Ukrainian and Hungarian education system. -
Comparing the IT skills and the programming knowledge of Hungarian students specialized in informatics with Romanian students attending a science course or a mathematics-informatics course
21-40Views:33The goal of this research is an analysis of the IT skills and programming knowledge of Hungarian and Romanian students attending a Science course or a Mathematics-Informatics course. Analysed was how effectively can students from different grades answer questions dealing with different subjects. After having evaluated the test results correctness of the original presumption emerged. Significance level was 5% through the analysis. Significant divergency in knowledge of Hungarian students and Romanian students of Humanities (Profil Uman) was found in 11th and 12th grades too. Romanian students attending a science course (Profil Real) and a Mathematics-Informatics course scored higher in programming than their Hungarian counterparts specialized in Informatics in the 11th grade. After the evaluation a final conclusion can be made: Romanian students of the Real Profile have the same or more practice in programming than Hungarian students specialized in Informatics, though the latters have the same or better IT skills. Unfortunately, Hungarian teachers concentrate on word processing and spreadsheet calculation and teach programming just for the students specialized in Informatics, although algorithm thinking would be important for every student before finishing secondary school. -
A computational thinking problem-thread for grade 7 students and above from the Pósa method
101-110Views:97Lajos Pósa has been developing his “learning through discovery” (Győri & Juhász, 2018) method since 1988. His weekend math camps are focused on fostering problem-solving skills and high-level mathematical-thinking skills in gifted students from grades 7 to 11. One of the core aspects of the method is the structure of the problems, all problems are part of a complex, intertwined, and rich network. In this article we analyze a computational thinking problem-thread and its role in the camps’s network of problems (Gosztonyi, 2019), and show some aspects of the method. The insights gained using this method can be useful in other contexts. The possible adaptation of the method to secondary and high schools is briefly discussed as well.
Subject Classification: 97D40
-
Teaching puzzle-based learning: development of transferable skills
245-268Views:37While computer science and engineering students are trained to recognise familiar problems with known solutions, they may not be sufficiently prepared to address novel real-world problems. A successful computer science graduate does far more than just program and we must train our students to reach the required levels of analytical and computational thinking, rather than hoping that it will just 'develop'. As a step in this direction, we have created and experimented with a new first-year level course, Puzzle-based Learning (PBL), that is aimed at getting students to think about how to frame and solve unstructured problems. The pedagogical goal is increase students' mathematical awareness and general problem solving skills by employing puzzles, which are educational, engaging, and thought provoking. In this paper we continue sharing our experiences in teaching such a course. Whereas a brief discussion on our pedagogical objectives were covered in the first paper together with the material of the first of two lectures on pattern recognition, this follow-up paper presents the material of the second of two lectures, in which additional exercises are discussed to reinforce the lesson. Along the way we provide a glimpse of some foundational ideas of computer science such as incomputability and general system development strategies such as incremental and iterative reasoning. This paper discusses the outcomes of PBL courses, which include expected improvement in the overall results achieved by students who have undertaken PBL courses, compared to those students who have not. -
Promoting a meaningful learning of double integrals through routes of digital tasks
107-134Views:179Within a wider project aimed at innovating the teaching of mathematics for freshmen, in this study we describe the design and the implementation of two routes of digital tasks aimed at fostering students' approach to double integrals. The tasks are built on a formative assessment frame and classical works on problem solving. They provide facilitative and response-specific feedback and the possibility to request different hints. In this way, students may be guided to the development of well-connected knowledge, operative and decision-making skills. We investigated the effects of the interaction with the digital tasks on the learning of engineering freshmen, by comparing the behaviours of students who worked with the digital tasks (experimental group, N=19) and students who did not (control group, N=19). We detected that students in the experimental group showed more exibility of thinking and obtained better results in the final exam than students in the control group. The results confirmed the effectiveness of the experimental educational path and offered us interesting indications for further studies.
Subject Classification: 97D40, 97U70, 44A45
-
Examining relation between talent and competence through an experiment among 11th grade students
17-34Views:32The areas of competencies that are formable, that are to be formed and developed by teaching mathematics are well-usable in recognizing talent. We can examine the competencies of a student, we can examine the competencies required to solve a certain exercise, or what competencies an exercise improves.
I studied two exercises of a test taken by students of the IT specialty segment of class 11.d of Jedlik Ányos High School, a class that I teach. These exercises were parts of the thematic unit of Combinatorics and Graph Theory. I analysed what competencies a gifted student has, and what competencies I need to improve while teaching mathematics. I summarized my experience about the solutions of the students, the ways I can take care of the gifted students, and what to do to the less gifted ones. -
Application of computer algebra systems in automatic assessment of math skills
395-408Views:36Mathematics is one of those areas of education, where the student's progress is measured almost solely by testing his or her ability of problem solving. It has been two years now that the authors develop and use Web-based math courses where the assessment of student's progress is fully automatic. More than 150 types of problems in linear algebra and calculus have been implemented in the form of Java-driven tests. Those tests that involve symbolic computations are linked with Mathematica computational kernel through the Jlink mechanism. An individual test features random generation of an unlimited number of problems of a given type with difficulty level being controlled flat design time. Each test incorporates the evaluation of the student's solution. Various methods of grading can be set at design time, depending on the particular purpose that a test is used for (self-assessment or administrative exam). Each test is equipped with the correct solution presentation on demand. In those problems that involve a considerable amount of computational effort (e.g. Gauss elimination), additional special tools are offered in a test window so that the student can concentrate on the method of solution rather than on arithmetic computations. (Another obvious benefit is that the student is thus protected from the risk of frustrating computational errors). Individual tests can be combined into comprehensive exams whose parameters can be set up at design time (e.g., number of problems, difficulty level, grading system, time allowed for solution). The results of an exam can be automatically stored in a database with all authentication and security requirements satisfied. -
The requirements in statistics education – comparison of PISA mathematical tasks and tasks from the mathematical textbooks in the field of statistics
263-275Views:34This work presents the results of the analysis of both PISA items and Croatian mathematical textbooks in the field of statistics.
The analysis shows that PISA's released statistics problems have in many ways different mathematical requirements from the requirements of textbook problems in the statistics chapters, with respect to the mathematical activities, complexity and in the forms of questions. The textbook analysis shows that mathematical examples and problems often require operation and interpretation skills on a reproductive or connections level. Statistics textbook problems are given in the closed-answer form. The results also show that while PISA puts strong emphasis on the statistics field, in the current Croatian curriculum this field is barely present. These discrepancies in requirements and portion of statistics activities surely affect the results of Croatian pupils on PISA assessment in the field of mathematical literacy. -
Teaching agile operation and leadership through linked university courses
1-32Views:100Agile software development methods, especially Scrum, are commonly used in software development companies. For this reason, our goal was that our undergraduate students gain experience as Scrum development team members and our master's students as agile leaders. To this end, we had redesigned and linked an undergraduate and a master's course, and launched the new course in the spring of 2021. The success of our approach was confirmed by a questionnaire survey of 86 undergraduate and 27 master's students. A/B testing was also performed. Our approach is a novelty compared to solutions where the Scrum Master is a course member, an instructor, or a university employee. In addition to being resource-efficient, it also offers master's students an unparalleled opportunity to develop agile leadership skills.
Subject Classification: 97U50
-
CAS as a didactical challenge
379-393Views:33The paper starts with the discussion of a concept of general mathematics education (mathematics education for everyone). This concept views the focus of teaching mathematics in the reduction of the demands in the field of operative knowledge and skills as well as in an increase of the demands in the fields of basic knowledge and reflection. The consequences of this concept are didactically challenging for the use of Computer Algebra Systems (CAS) in the teaching of mathematics. By reducing the operative work we reduce exactly that field in which the original potential of CAS lies. It is shown that in such maths classes the main focus of CAS is on their use as a pedagogical tool, namely as support for the development of basic knowledge and reflection as well as a model of communication with mathematical experts. -
Report on the "English Language Section of Varga Tamás Days 2009"
169-175Views:33The 9th English Language Section as a part of the Varga Tamás Days was organised by the Department of Mathematics Education at the Teacher Training Institute of the Eötvös Loránd University. We report on the talks and the following discussions in this section. -
Visualisation in geometry education as a tool for teaching with better understanding
337-346Views:165In primary and secondary geometry education, some problems exist with pupils’ space thinking and understanding of geometric notions. Visualisation plays an important role in geometry education, and the development of pupils’ visualisation skills can support their spatial imagination. The authors present their own thoughts on the potential of including visualisation in geometry education, based on the analysis of the Hungarian National Core Curriculum and Slovak National Curriculum. Tasks for visualisation are also found in international studies, for example the Programme for International Student Assessment (PISA). Augmented reality (AR) and other information and communication technology (ICT) tools bring new possibilities to develop geometric thinking and space imagination, and they also support mathematics education with better understanding.
Subject Classification: 97U10, 97G10
-
The appearance of the characteristic features of the mathematical thinking in the thinking of a chess player
201-211Views:34It is more and more important in 21st century's education that not only facts and subject knowledge should be taught but also the ways and methods of thinking should be learnt by students. Thinking is a human specificity which is significant both in mathematics and chess. The exercises aimed at beginner chess players are appropriate to demonstrate to students the mathematical thinking of 12-14 year-old students.
Playing chess is an abstract activity. During the game we use abstract concepts (e.g. sacrifice, stalemate). When solving a chess problem we use logical quantifiers frequently (e.g. in the case of any move of white, black has a move that...). Among the endgames we find many examples (e.g. exceptional draw options) that state impossibility. Affirmation of existence is frequent in a mate position with many moves. We know there is a mate but the question in these cases is how it can be delivered.
We present the chess problem on beginners' level although these exercises appear in the game of advanced players and chess masters too, in a more complex form. We chose the mathematical tasks from arithmetic, number theory, geometry and the topic of equations. Students encounter these in classes, admission exams and student circles. Revealing the common features of mathematical and chess thinking shows how we can help the development of students' mathematical skills with the education of chess. -
Shall we use one more representation? Suggestions about establishing the notion of recursion in teaching informatics in primary schools
209-229Views:27Among the most prominent developmental tasks of primary school education one finds increasing pupils' cognitive capacity with especial regard to observing, interpreting, coding and proving skills, which form an integral part of information and communication culture.
Info-technology (problem solving with the tools and methods of informatics), a subject matter within informatics, provides outstanding opportunities to reach the aims outlined above.
This study presents methodological ideas related to the subfield Algorithmization and data modelling of Info-technology. More specifically, it presents teaching methods to be applied while establishing the notion of recursion in grades 3–8 of primary education, and at the same time it also focuses on various realization possibilities of the prominent developmental tasks mentioned above. -
Software engineering education in cooperation with industrial partners
133-148Views:26This paper presents our experiences on teaching software engineering in teams which are organized around different R+D projects. These long-running, innovative projects are carried out in cooperation with industrial partners, and are supported by student exchange. While MSc and PhD students work together with faculty staff members on the projects in an industrial-like environment, the students develop skills that would be otherwise very hard for them to obtain. The methodological contributions of the paper are illustrated by, and substantiated with, the description of a concrete software engineering project. -
Solving mathematical problems by using Maple factorization algorithms
293-297Views:32Computer algebra gives methods for manipulating mathematical expression. In this paper we use the Maple software to solve some elementary problems. Computeraided approach in the instruction of mathematics helps to impart problem solving skills to students. -
Teaching geometry using computer visualizations
259-277Views:20In this work we study the development of students' creativity using computer-aided-teaching during IT classroom. Teaching geometry in Bolyai Grammar School specialized natural science classes is not an easy task. Here is introduced a new didactic means of teaching geometry which nevertheless requires the same effort to understand the material, but uses a different more active method to familiarize students with the topics. Traditional methods, and the use of compasses and rulers are not omitted either, as they develop the students' motor skills. -
Introductory Computer Programming Courses in Mathematics Curriculum
19-30Views:110We present the results of surveys and curricular research on introductory computer programming courses that are required or recommended for mathematics degrees at U.S. colleges and universities. Our target schools were those with populations between 5,000 and 20,000 undergraduate students. A key result is a synopsis of programming languages in use in these introductory courses with Java, Python and C + + holding the top three spots. We found that 85% of the 340 schools in our pool require or recommend an introductory programming course as a component of a mathematics degree. Furthermore, most of these introductory programming courses are taught by faculty outside of the mathematics department. These results indicate that mathematics faculty value computer programming and should be actively involved in setting learning outcomes, incorporating skills and concepts learned in introductory programming courses into subsequent mathematics courses, and determining programming languages in use.
Subject Classification: 97D30, 97P20, 97P40
-
Analysis of the affective factors of learning mathematics among teacher trainees
225-254Views:39The Hungarian National Core Curricula gives primacy to the development of abilities and the practical application of knowledge. The task of the training programme is primarily to prepare teacher trainees for the teaching and educating profession. As teachers, they are going to plan, organize, help, guide, control and evaluate the learning of mathematics of individuals and groups of students from the age of 6 to 10 (12), and cultivate their mathematical skills, thinking and positive attitude towards any mathematical activities. In order to train educators who are able to meet the above requirements on high standard, it is necessary to update the teacher training programme based on the trainees' preliminary knowledge and motivation level.
The key to learn about the child's mind and achieve conscious development is the systematization of factual knowledge and methodological awareness. The modern, flexible approach to subject pedagogy, based on pedagogy, psychology and epistemology, qualifies trainees to educate learners who understand and like mathematics. Therefore, it is essential to develop the trainees' positive approach to mathematics and arouse their demand for continuous professional improvement. (Programme of the four-year primary school teacher training, 1995.)
In our research we are looking for ways of ascertaining the starting parameters which have influence on the planning of the studies of mathematics and subject pedagogy. In this article we introduce a questionnaire by the means of which we collected information on the trainees' attitude and its changing towards mathematics. With the help of the analysis of the answers we paint a picture of the ELTE TÓFK (Eötvös Loránd University, Faculty of Elementary and Nursery School Teacher's Training) third year students' attitude to the subject, and we compare it to the tendencies noticed in the mass education. The energy invested in learning is influenced by the assumption of the relevance and importance of the subjects. Therefore we considered it also our task to reveal. Besides the students' attitude toward mathematics and their assumption about their own competence we have collected data also on their performance in the subject. Summarising the research results we show the advantages of the questionnaire, and summarise the observations which would indicate need for methodological changes in the mathematics teacher training. -
Teaching sorting in ICT
101-117Views:31This article is aimed at considering how an algorithmic problem – more precisely a sorting problem – can be used in an informatics class in primary and secondary education to make students mobilize the largest possible amount of their intellectual skills in the problem solving process. We will be outlining a method which essentially forces students to utilize their mathematical knowledge besides algorithmization in order to provide an efficient solution. What is more, they are expected to use efficiently a tool that has so far not been associated with creative thinking. Sorting is meant to be just an example, through which our thoughts can easily be demonstrated, but – of course the method of education outlined can be linked to several other algorithmic problems, as well. -
Young women's barriers to choose IT and methods to overcome them - A case study from Hungary
77-101Views:175Women's scarcity in the STEM, especially in the IT sector is pronouncedly evident. Young women are obstructed from entering and remaining in IT by a broad range of social, educational, and labor market factors. In our paper, we would like to analyze the main barriers girls face in choosing IT, while also proposing potential methods to help them overcome these obstacles. In the second part of the paper, we will present a case study to illustrate in detail how the combination of the above methods can be put into practice to address and tackle the complex set of barriers girls face. We will first introduce a Hungarian annual program, Girls' Day ("Lányok napja"), specifically aimed to promote STEM to girls, then we will present two specific events organized for the 2020 edition of the program and designed with the above principles in mind. The interactive presentation, exposing girls to female role models of the field in a gamified way, and a game development exercise, building Scratch programming skills, have attempted to provide young women both with positive perspectives and experiences in IT, which are instrumental in helping them to surmount entrenched obstacles and raise their interest in the field.
Subject Classification: 97P10, 97U30
-
Teaching puzzle-based learning: development of basic concepts
183-204Views:17While computer science and engineering students are trained to recognise familiar problems with known solutions, they may not be sufficiently prepared to address novel real-world problems. A successful computer science graduate does far more than just program and we must train our students to reach the required levels of analytical and computational thinking, rather than hoping that it will just 'develop'. As a step in this direction, we have created and experimented with a new first-year level course, Puzzle-based Learning (PBL), that is aimed at getting students to think about how to frame and solve unstructured problems. The pedagogical goal is increase students' mathematical awareness and general problem solving skills by employing puzzles, which are educational, engaging, and thought provoking. We share our experiences in teaching such a course – apart from a brief discussion on our pedagogical objectives, we concentrate on discussing the presented material which covers (in two lectures) just one selected topic (pattern recognition). In this paper we present the ideas behind foundations for PBL and the material of the first of two lectures on pattern recognition, in which we address core concepts and provide students with sufficient exemplars to illustrate the main points. -
An examination of descriptive statistical knowledge of 12th-grade secondary school students - comparing and analysing their answers to closed and open questions
63-81Views:74In this article, we examine the conceptual knowledge of 12th-grade students in the field of descriptive statistics (hereafter statistics), how their knowledge is aligned with the output requirements, and how they can apply their conceptual knowledge in terms of means, graphs, and dispersion indicators. What is the proportion and the result of their answers to (semi-)open questions for which they have the necessary conceptual knowledge, but which they encounter less frequently (or not at all) in the classroom and during questioning? In spring 2020, before the outbreak of the pandemic in Hungary, a traditional-classroom, “paper-based” survey was conducted with 159 graduating students and their teachers from 3 secondary schools. According to the results of the survey, the majority of students have no difficulties in solving the type of tasks included in the final exam. Solving more complex, open-ended tasks with longer texts is more challenging, despite having all the tools to solve them, based on their conceptual knowledge and comprehension skills. A valuable supplement to the analysis and interpretation of the results is the student attitudes test, also included in the questionnaire.
Subject Classification: 97K40, 97-11, 97D60
-
Mathematics teachers' reasons to use (or not) intentional errors
263-282Views:34Mathematics teachers can make use of both spontaneously arising and intentionally planted errors. Open questions about both types of errors were answered by 23 Finnish middle-school teachers. Their reasons to use or not to use errors were analyzed qualitatively. Seven categories were found: Activation and discussion, Analyzing skills, Correcting misconceptions, Learning to live with errors, (Mis)remembering errors, (Mis)understanding error and Time. Compared to earlier results, the teachers placed substantially less emphasis on affective issues, whereas the answers yielded new distinctions in cognitive dimensions. In particular, teachers' inclination to see errors as distractions could be divided into two aspects: students misunderstanding an error in the first place or student forgetting that an error was erroneous. Furthermore, the content analysis revealed generally positive beliefs towards using errors but some reservations about using intentional errors. Teachers viewed intentional errors mainly positively as possibilities for discussion, analysis and learning to live with mistakes. -
Teaching graph algorithms with Visage
35-50Views:29Combinatorial optimization is a substantial pool for teaching authentic mathematics. Studying topics in combinatorial optimization practice different mathematical skills, and because of this have been integrated into the new Berlin curriculum for secondary schools. In addition, teachers are encouraged to use adequate teaching software. The presented software package "Visage" is a visualization tool for graph algorithms. Using the intuitive user interface of an interactive geometry system (Cinderella), graphs and networks can be drawn very easily and different textbook algorithms can be visualized on the graphs. An authoring tool for interactive worksheets and the usage of the build-in programming interface offer new ways for teaching graphs and algorithms in a classroom.