Search

Published After
Published Before

Search Results

  • On the legacy of G. Pólya: some new (old) aspects of mathematical problem solving and relations to teaching
    169-189
    Views:
    36
    In this article are given some new aspects of mathematical problem solving. A framework is presented by three main resources: (1) Pólya's studies about mathematical heuristics are augmented by information drawn from a study of the history of mathematical problem solving. (2) Connections are presented between mathematical problem solving and mathematical beliefs. (3) Experience with a special program for mathematical talented students is sketched. On this background a new textbook-series has been developed and some teaching examples are taken from this context. An outlook is given on some new research on teaching of problem solving, including possible relations to modern brain research.
  • On the psychology of mathematical problem solving by gifted students
    289-301
    Views:
    33
    This paper examines the nature of mathematical problem solving from a psychological viewpoint as a sequence of mental steps. The scope is limited to solution processes for well defined problems, for instance, which occur at International Mathematical Olympiads. First the meta-mathematical background is outlined in order to present problem solving as a well defined search problem and hence as a discovery process. Solving problems is described as a sequence of elementary steps of the so called "relationship-vision" introduced here. Finally, non-procedural aspects of the psychology of problem solving are summarized, such as the role of persistence, teacher-pupil relationship, the amount of experience needed, self-confidence and inspiration at competitions.
  • Looking back on Pólya’s teaching of problem solving
    207-217
    Views:
    228

    This article is a personal reflection on Pólya's work on problem solving, supported by a re-reading of some of his books and viewing his film Let Us Teach Guessing. Pólya's work has had lasting impact on the goals of school mathematics, especially in establishing solving problems (including non-routine problems) as a major goal and in establishing the elements of how to teach for problem solving. His work demonstrated the importance of choosing rich problems for students to explore, equipping them with some heuristic strategies and metacognitive awareness of the problem solving process, and promoting 'looking back' as a way of learning from the problem solving experience. The ideas are all still influential. What has changed most is the nature of classrooms, with the subsequent appreciation of a supporting yet challenging classroom where students work collaboratively and play an active role in classroom discussion.

    Subject Classification: 97D50, 97A30

  • Problemorientierung im Mathematikunterricht – ein Gesichtspunkt der Qualitätssteigerung
    251-291
    Views:
    7
    The aim of this article is to give a synopsis of problem orientation in mathematics education and to stimulate the discussion of the development and research about problem-orientated mathematics teaching. At the beginning we present historical viewpoints of problem orientation and their connection with recent theories of cognition (constructivism). Secondly we give characterizations of concepts that stand in the context of problem-orientation and discuss different forms of working with open problems in mathematics teaching. Arguments for more problem orientation in mathematics education will be discussed afterwards. Since experience shows that the implementation of open problems in classroom produces barriers, we then discuss mathematical beliefs and their role in mathematical learning and teaching. A list of literature at the end is not only for references but also can be used to further research.
    Zusammenfassung. Ziel des Beitrags ist es, eine Synopsis in Bezug auf Problemorientierung im Mathematikunterricht zu geben und die Diskussion bezüglich Entwicklung und Forschung eines problemorientierten Mathematikunterrichts zu stimulieren. Als Erstes werden historische Gesichtspunkte von Problemorientierung und deren Verkn üpfung mit neueren Erkenntnistheorien (Konstruktivismus) vorgestellt. Zweitens werden Erläuterungen zu Begriffen, die im Kontext von Problemorientierung stehen, gegeben und verschiedene Ausprägungen der Behandlung offener Probleme im Mathematikunterricht diskutiert. Argumente für eine stärkere Berücksichtigung von Problemorientierung im Mathematikunterricht werden danach erörtert. Auf Barrieren bei der Implementierung von offenen Problemen im Unterricht, die durch mathematische Beliefs (Vorstellungen, Überzeugungen) geprägt sind, wird zum Schluss eingegangen. Die abschließend aufgeführte Literaturliste dient nicht nur dem Beleg der Zitate, sondern kann auch zu weiterer Vertiefung genutzt werden.
  • Analyse von Lösungswegen und Erweiterungsmöglichkeiten eines Problems für die Klassen 7–11
    231-249
    Views:
    30
    Making several solutions for a problem i.e. the generalization, or the extension of a problem is common in the Hungarian mathematics education.
    But the analysis of a problem is unusual where the connection between the mathematical content of the task and of its different formulations is examined, solutions from different fields of mathematics are presented regarding the knowledge of different age groups, the problem is generalized in different directions, and several tools (traditional and electronic) for solutions and generalizations are presented.
    This kind of problem analysis makes it viable that during the solution/elaboration several kinds of mathematical knowledge and activities are recalled and connected, facilitating their use inside and outside of mathematics.
    However, an analysis like this is not unfamiliar to the traditions of the Hungarian problem solving education – because it also aims at elaborating a problem – but from several points of view.
    In this study, a geometric task is analysed in such a way.
  • On an international training of mathematically talented students: assets of the 20 years of the “Nagy Károly Mathematical Student-meetings”
    77-89
    Views:
    33
    The focus of this paper is to present the gems of the "Nagy Károly Mathematical Student-meetings" in Rév-Komárom (Slovakia) from 1991 to 2010. During these 20 years there was done a lot of work to train mathematically talented students with Hungarian mother tongue and to develop their mathematical thinking, and to teach them problem solving and heuristic strategies for successful acting on the competitions. We collected the most interesting problems and methods presented by the trainer teachers.
  • The effects of chess education on mathematical problem solving performance
    153-168
    Views:
    50
    We investigate the connection between the "queen of sciences" (mathematics) and the "royal game" (chess) with respect to the development of mathematical problem solving ability in primary school education (classes 1-8, age 7-15) where facultative chess education is present. The records of the 2014 year's entrance exam in mathematics – obligatory for the enrollment to secondary grammar schools in Hungary – are compared for the whole national database and for the results of a group containing chess-player students. The problems in the tests are classified with respect to the competencies needed to solve them. For the evaluation of the results we used standard mathematical statistical methods.
  • Realizing the problem-solving phases of Pólya in classroom practice
    219-232
    Views:
    124

    When teaching mathematical problem-solving is mentioned, the name of Pólya György inevitably comes to mind. Many problem-solving lessons are planned using Pólya's steps and helping questions, and teachers often rely on his heuristics even if their application happens unconsciously. In this article, we would like to examine how the two phases, Making a plan and Looking back, can be realized in a secondary school mathematics lesson. A case study was designed to observe and analyse a lesson delivered using cooperative work.

    Subject Classification: 97B10, 97C70, 97D40, 97D50

  • Zbigniew Michalewicz - Matthew Michalewicz: Puzzle Based Learning: An introduction to critical thinking, mathematics, and problem solving. Hybrid Publishers Melbourne 2008 (Book review)
    415-420
    Views:
    40
    Based on their experiences with engineering, mathematics, computer science, business students concerning the puzzle based learning in different countries the authors summarize their main problem solving teaching ideas. With help of interesting, motivating, nice problems they analyze the main mathematical principles and problem types. The review gives an overview about the main ideas, results of an interesting book.
  • The Project Method and investigation in school mathematics
    241-255
    Views:
    39
    The Project Method (PM) is becoming more common in the teaching of mathematics. Most of the time, Project Method means solving open and relatively wide formulated problems for the application of particular mathematical topics and the solving of everyday life problems.
    At present many experts in the theory of teaching mathematics advocate teaching activities as the characteristic for most mathematical work in the classroom. Thus, there is a question: whether it is possible or eventual desirable to use the PM for solving genuine mathematical problems. This paper deals with this question and discusses the connection between the PM and investigation of new mathematical knowledge for students. Our experience has shown that the PM in connection with investigations can be a useful and effective approach to teaching mathematics.
  • The appearance of the characteristic features of the mathematical thinking in the thinking of a chess player
    201-211
    Views:
    34
    It is more and more important in 21st century's education that not only facts and subject knowledge should be taught but also the ways and methods of thinking should be learnt by students. Thinking is a human specificity which is significant both in mathematics and chess. The exercises aimed at beginner chess players are appropriate to demonstrate to students the mathematical thinking of 12-14 year-old students.
    Playing chess is an abstract activity. During the game we use abstract concepts (e.g. sacrifice, stalemate). When solving a chess problem we use logical quantifiers frequently (e.g. in the case of any move of white, black has a move that...). Among the endgames we find many examples (e.g. exceptional draw options) that state impossibility. Affirmation of existence is frequent in a mate position with many moves. We know there is a mate but the question in these cases is how it can be delivered.
    We present the chess problem on beginners' level although these exercises appear in the game of advanced players and chess masters too, in a more complex form. We chose the mathematical tasks from arithmetic, number theory, geometry and the topic of equations. Students encounter these in classes, admission exams and student circles. Revealing the common features of mathematical and chess thinking shows how we can help the development of students' mathematical skills with the education of chess.
  • Word problems in different textbooks at the early stage of teaching mathematics comparative analysis
    31-49
    Views:
    151

    In a previous research, Csíkos and Szitányi (2019) studied teachers’ views and pedagogical content knowledge on the teaching of mathematical word problems. While doing so, they reviewed and compared Eastern European textbooks of Romania, Russia, Slovakia, Croatia, and Hungary to see how world problem-solving strategies are presented in commonly used textbooks. Their results suggested that teachers, in general, agreed with the approach of the textbooks regarding the explicit solution strategies and the types of word problems used for teaching problem-solving. They also revealed that the majority of the participants agreed that a word problem-solving algorithm should be introduced to the students as early as in the first school year. These results have been presented at the Varga 100 Conference in November 2019. As the findings suggested a remarkable similarity between the Eastern European textbook approaches, in the current study we decided to conduct further research involving more textbooks from China, Finland, and the United States.

    Subject Classification: 97U20, 08A50

  • Pólya’s influence on (my) research
    161-171
    Views:
    113

    In this article, I outline the influence of George Pólya's work on research in different areas and especially on mathematics education, namely heuristics and models of the problem-solving process. On a more personal note, I will go into some details regarding Pólya's influence on my own work in mathematical problem solving with a focus on the research project for my PhD thesis.

    Subject Classification: 97xxx

  • Some Remarks on History of Mathematical Problem Solving
    51-64
    Views:
    33
    In this contribution, it is our goal is to look on history of mathematics as a resource for a long-term study of mathematical problem solving processes and heuristics. In this way we intend to get additional information, e. g., about heuristics which proved to be extremely successful to create new mathematics. "Changing representation" and "false position" are examples of such strategies, which are illustrated by concrete examples to demonstrate the use for classroom teaching and teacher education. Our methods are based on hermeneutic principles.
  • Transition from arithmetic to algebra in primary school education
    225-248
    Views:
    35
    The main aim of this paper is to report a study that explores the thinking strategies and the most frequent errors of Hungarian grade 5-8 students in solving some problems involving arithmetical first-degree equations. The present study also aims at identifying the main arithmetical strategies attempted to solve a problem that can be solved algebraically. The analysis focuses on the shifts from arithmetic computations to algebraic thinking and procedures. Our second aim was to identify the main difficulties which students face when they have to deal with mathematical word problems. The errors made by students were categorized by stages in the problem solving process. The students' written works were analyzed seeking for patterns and regularities concerning both of the methods used by the students and the errors which occured in the problem solving process. In this paper, three prominent error types and their causes are discussed.
  • A role of geometry in the frame of competencies attainment
    41-55
    Views:
    29
    We discuss aspects of the Education Reform from teaching to educational system. In this context we recognize some problems in recognition of some competencies that students need to achieve and we present how we have developed the measurement method of spatial abilities and problem solving competence. Especially, we investigate how students use spatial visualization abilities in solving various problems in other mathematical course. We have tested how students use their spatial abilities previously developed in geometry courses based on conceptual approach to solve a test based on procedural concept in Mathematical Analysis course.
  • The role of computer in the process of solving of mathematical problems (results of research)
    67-80
    Views:
    36
    We would like to present results of an almost two years investigations about the role computer in the process of solving of mathematical problems. In these investigations took part 35 students of the secondary school (generalists) in the age 17–19 years. Each of these students solved following problem:
    Find all values of the parameter m so that the function
    f(x) = |mx + 1| − |2x − m| is:
    a) bounded,
    b) bounded only from the bottom,
    c) bounded only from above,
    first without a computer and next with a special computer program. We would like to show results of these researches.
  • Würfel und Augensummen – ein unmögliches Paar
    71-88
    Views:
    26
    It is well known that the values 2, 3, ..., 12 of the sum of eyes that appear when throwing two regular dice are not equally distributed. It can also be shown that no matter how the dice are falsified (or if only one of them is being manipulated) they can never reach the same probability concerning the sum of eyes ([8], 91 et seq.). This discovery can be generalized for n ≥ 2 dice. Various results of algebra and (real) calculus are used, so that a connection between two different mathematical fields can be realized. Such a connection is typical and often provides a large contribution for mathematics (because it frequently leads to a successful attempt of solving a special problem) and therefore examples of this sort should also be included in the mathematical education at schools as well as in the student teachers' university curriculum for the study of mathematics.
  • Fostering engineering freshmen’s shifts of attention by using Matlab LiveScript for solving mathematical tasks
    1-14
    Views:
    104

    We designed an experimental path including a summative assessment phase, where engineering freshmen are involved in solving mathematical tasks by using Matlab LiveScripts. We analyzed the students’ answers to a questionnaire about their perceived impact of the use of Matlab on their way to solve mathematical tasks. The main result is that students show shifts of attention from computations to other aspects of problem solving, moving from an operational to a structural view of mathematics.

    Subject Classification: 97U70, 97H60

  • "How to be well-connected?" An example for instructional process planning with Problem Graphs
    145-155
    Views:
    96

    Teachers’ design capacity at work is in the focus of didactical research worldwide, and fostering this capacity is unarguably a possible turning point in the conveyance of mathematical knowledge. In Hungary, the tradition hallmarked by Tamás Varga is particularly demanding towards teachers as they are supposed to be able to plan their long-term processes very carefully. In this contribution, an extensive teaching material designed in the spirit of this tradition will be presented from the field of Geometry. For exposing its inner structure, a representational tool, the Problem Graph is introduced. The paper aims to demonstrate that this tool has potential for analyzing existing resources, helping teachers to reflect on their own preparatory and classroom work, and supporting the creation of new designs.

    Subject Classification: 97D40, 97D50, 97D80, 97G10, 97U30

  • Comments on the remaining velocity project with reports of school-experiments
    117-133
    Views:
    14
    The aim of this article is to introduce different possible solutions to the exercise referring to the calculation of "remaining velocity". We explain the possible approaches to the problem with the help of either using the tools of mathematics or other subjects. During the past few years, we have made Hungarian and Slovakian secondary school students solve the exercise, choosing from both children of average and of high abilities. The experince has shown that very few students were able to solve the problem by themselves, but with the help of their teachers, the exercise and the solution has been an eye-opener experience to all of them. A lot of students were even considering to drive more carefully in the future after getting their driving licenses.
  • Teaching sorting in ICT
    101-117
    Views:
    30
    This article is aimed at considering how an algorithmic problem – more precisely a sorting problem – can be used in an informatics class in primary and secondary education to make students mobilize the largest possible amount of their intellectual skills in the problem solving process. We will be outlining a method which essentially forces students to utilize their mathematical knowledge besides algorithmization in order to provide an efficient solution. What is more, they are expected to use efficiently a tool that has so far not been associated with creative thinking. Sorting is meant to be just an example, through which our thoughts can easily be demonstrated, but – of course the method of education outlined can be linked to several other algorithmic problems, as well.
  • Teaching of old historical mathematics problems with ICT tools
    13-24
    Views:
    20
    The aim of this study is to examine how teachers can use ICT (information and communications technology) tools and the method of blended learning to teach mathematical problem solving. The new Hungarian mathematics curriculum (NAT) emphasizes the role of history of science, therefore we chose a topic from the history of mathematics, from the geometry of triangles: Viviani's Theorem and its problem field. We carried out our teaching experiments at a secondary school with 14-year-old students. Students investigated open geometrical problems with the help of a dynamic geometric software (GeoGebra). Their research work was similar to the historical way.
  • Solving mathematical problems by using Maple factorization algorithms
    293-297
    Views:
    32
    Computer algebra gives methods for manipulating mathematical expression. In this paper we use the Maple software to solve some elementary problems. Computeraided approach in the instruction of mathematics helps to impart problem solving skills to students.
  • Why do we complicate the solution of the problem? reflection of Finnish students and teachers on a mathematical summer camp
    405-415
    Views:
    31
    This paper deals with reactions and reflections of Finnish secondary school students and teachers on Hungarian mathematics teaching culture. The experiences were collected at a mathematics summer camp in Hungary.