Search
Search Results
-
Report on the Conference of History of Mathematics & Teaching of Mathematics with Special Subject Ethno-mathematics: Research in History of Mathematics & Teaching of Mathematics : University of Miskolc, 18–21 May, 2006, Miskolc, Hungary
437-449Views:35The 4th Conference on History of Mathematics & Teaching of Mathematics with Special Subject Ethno-mathematics was organized at the University of Miskolc (Hungary). The aim of the conference was to present aspects of the History of Mathematics and Ethno-mathematics, including its impact on the Teaching of Mathematics.
Its motto was: Mathematics – a common language for Europe for thousand years.
There were 21 presentations, a poster lecture (J. Kolumbán, University of Cluj, Romania) and an exhibition made by students of Eötvös University, Budapest (R. Tanács, K. Varga).
After a short historical introduction we present 19 abstracts and the poster lecture. -
Report of Meeting Researches in Didactics of Mathematics and Computer Sciences: January 27-29, 2017 Budapest, Hungary
109-128Views:12The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Budapest, Hungary from the 27th to the 29th of January, 2017 at Eötvös Lorand University. It was organized by the Doctoral School of Mathematical and Computational Sciences of University of Debrecen and the Department of Mathematics Teaching and Education Centre Institute of Mathematics.
The 62 participants – including 43 lecturers and 20 PhD students – came from 7 countries, 22 cities and represented 35 institutions of higher and secondary education. -
Task variations for backtrack
107-120Views:77This article has been written for informatics teachers who want to issue back-track based tasks on their lessons or as homework or on competitions. We present a few methods to generate a more complicated problem from a simpler task, which will be more complex, and its solution needs a good idea or trick. Starting from an example, we lead the reader through increasingly di cult task variations.
Subject Classification: 97P50
-
Interdisciplinary Secondary-School Workshop: Physics and Statistics
179-194Views:55The paper describes a teaching unit of four hours with talented students aged 15-18. The workshop was designed as a problem-based sequence of tasks and was intended to deal with judging dice whether they are regular or loaded. We first introduced the students to the physics of free rotations of rigid bodies to develop the physics background of rolling dice. The highlight of this part was to recognise that cubes made from homogeneous material are the optimal form for six-sided objects leading to equal probabilities of the single faces. Experiments with all five regular bodies would lead to similar results; nevertheless, in our experiments we focused on regular cubes. This reinsures that the participants have their own experience with the context. Then, we studied rolling dice from the probabilistic point of view and – step-by-step – by extending tasks and simulations, we introduced the idea of the chi-squared test interactively with the students. The physics and the statistics part of the paper are largely independent and can be also be read separately. The success of the statistics part is best described by the fact that the students recognised that in some cases of loaded dice, it is easier to detect that property and in other cases one would need many data to make a decision with small error probabilities. A physical examination of the dice under inspection can lead to a quick and correct decision. Yet, such a physical check may fail for some reason. However, a statistical test will always lead to reasonable decision, but may require a large database. Furthermore, especially for smaller datasets, balancing the risk of different types of errors remains a key issue, which is a characteristic feature of statistical testing.
Subject Classification: F90, K90, M50, R30
-
The transition problem in Hungary: curricular approach
1-16Views:120The curricular background of the transition problem from highschool to universty is analysed in Hungary. While students finish their mathematical studies successfully at highschool, pass their final exams, this knowledge seems to disappear at their first year at university. We investigate the mathematical knowledge expected by the Hungarian universities and compare it to expectations of the National Core Curriculum. Based on the levelling tests of four universities we created a seven problem test for highschool students containing very basic problems required both by the universities and the National Core Curriculum. We analyse the results of the test.
Subject Classification: D34, D35
-
Visualisation in geometry education as a tool for teaching with better understanding
337-346Views:164In primary and secondary geometry education, some problems exist with pupils’ space thinking and understanding of geometric notions. Visualisation plays an important role in geometry education, and the development of pupils’ visualisation skills can support their spatial imagination. The authors present their own thoughts on the potential of including visualisation in geometry education, based on the analysis of the Hungarian National Core Curriculum and Slovak National Curriculum. Tasks for visualisation are also found in international studies, for example the Programme for International Student Assessment (PISA). Augmented reality (AR) and other information and communication technology (ICT) tools bring new possibilities to develop geometric thinking and space imagination, and they also support mathematics education with better understanding.
Subject Classification: 97U10, 97G10
-
Nice tiling, nice geometry!?!
269-280Views:38The squared papers in our booklets, or the squared (maybe black and white) pavements in the streets arise an amusing problem: How to deform the side segments of the square pattern, so that the side lines further remain equal (congruent) to each other? More precisely, we require that each congruent transformation of the new pattern, mapping any deformed side segment onto another one, leaves the whole (infinitely extended) pattern invariant (unchanged).
It turns out that there are exactly 14 types of such edge-transitive (or so-called isotoxal) quadrangle tilings, sometimes with two different forms (e.g. black and white) of quadrangles (see Figure 2). Such a collection of tiling can be very nice, perhaps also useful for decorative pavements in streets, in flats, etc.
I shall sketch the solution of the problem that leads to fine (and important) mathematical concepts (as barycentric triangulation of a polygonal tiling, adjacency operations, adjacency matrix, symmetry group of a tiling, D-symbol, etc). All these can be discussed in an enjoyable way, e.g. in a special mathematical circle of a secondary school, or in more elementary form as visually attractive figures in a primary school as well.
My colleague, István Prok [11] developed an attractive computer program on the Euclidean plane crystallographic groups with a nice interactive play (for free download), see our Figures 3-5.
A complete classification of such Euclidean plane tilings (not only with quadrangles) can be interesting for university students as well, hopefully also for the Reader (Audience). This is why I shall give some references, where you find also other ones.
Further problems indicate the efficiency of this theory now. All these demonstrate the usual procedure of mathematics and the (teaching) methodology as well: We start with a concrete problem, then extend it further, step-by-step by creating new manipulations, concepts and methods. So we get a theory at certain abstraction level. Then newer problems arise, etc.
This paper is an extended version of the presentation and the conference paper [7]. The author thanks the Organizers, especially their head Professor Margita Pavlekovic for the invitation, support and for the kind atmosphere of the conference. -
Béla Kerékjártó: (a biographical sketch)
231-263Views:30Kerékjártó published more than 70 scientific papers mainly in the field of topology. He achieved his most important results in the classical transformation topology and in the theoretical research of the continuous groups. He was the author of three books: Vorlesungen über Topologie; Euclidean geometry; Study on the projective geometry. -
Connections between discovery learning through the Pósa Method and the secondary school leaving examination in three Hungarian mathematics classrooms
67-85Views:214The Pósa Method is a guided discovery learning method that has been used in Hungarian education in the form of extracurricular activities for "gifted" mathematics students. A four-year experiment implemented the method in three more "average" classrooms. This article reports on the relationship between the Pósa Method and the standardized secondary school leaving mathematics exam (Matura Exam in short) in Hungary. Data consists of students' survey responses, teacher interviews, and exam results from the three Hungarian classrooms who took part in the four-year experiment. We identify aspects of the Pósa Method that can benefit and hinder exam performance. In addition, we find that learning through the Pósa Method for the four years of high school has adequately prepared students for the exam.
Subject Classification: 97D44, 97D54, 97D64
-
A retrospective look at discovery learning using the Pósa Method in three Hungarian secondary mathematics classrooms
183-202Views:186While the Pósa Method was originally created for mathematical talent management through extracurricular activities, three "average" public secondary school classrooms in Hungary have taken part in a four-year experiment to implement the Pósa Method, which is based on guided discovery learning of mathematics. In this paper, we examine the students' and teachers' reflections on the Pósa Method, and how student perspectives have changed between their first and last year of high school. Overall, teachers and students had a positive experience with the Pósa Method. Furthermore, our research indicated that this implementation has met several objectives of the Pósa Method, including enjoyment of mathematics and autonomous thinking.
Subject Classification: 97D40
-
E-learning management systems in Hungarian higher education
357-383Views:32Computers, informatics, and information technology have an ever-increasing role in the establishment and spread of new educational forms and methods. The role of e-learning as a new educational model is increasing in the world of computer networks, because of a widespread access to the net and a growing demand for learning beside work.
Technological elements of e-learning can be separated as Learning Management System, authoring system, course material and a browser. Learning Management System is the software package that creates the structure of the whole educational process: course organisation, course material presentation, tracking student work, recording results, and the completion of the program.
This publication shows examples of Learning Management Systems used in Hungarian higher education. Summarizing and systematizing expectations and demands expressed in connection with learning management systems, the present work tries to help the reader orientate on an ever-expanding market. -
Report on "English Language Section of Varga Tamás Days": annual meeting, 11–12 November, 2005, Budapest, Hungary
217-223Views:36The Department of Mathematics Education at Teacher Training Institute of Eötvös University organised the 5th English Language Section as a part of Varga Tamás Methodical Days. We discuss the activities based on the authors' abstracts. -
Central axonometry in engineer training and engineering practice
17-28Views:22This paper is concerned with showing a unified approach for teaching central and parallel projections of the space to the plane giving special emphasis to engineer training. The basis for unification is provided by the analogies between central axonometry and parallel axonometry. Since the concept of central axonometry is not widely known in engineering practice it is necessary to introduce it during the education phase. When teaching axonometries dynamic geometry software can also be used in an interactive way. We shall provide a method to demonstrate the basic constructions of various axonometries and use these computer applications to highlight their similarities. Our paper sheds light on the advantages of a unified approach in such areas of engineering practice as making hand drawn plans and using CAD-systems. -
Mathematical Laboratory: Semiotic mediation and cultural artefacts in the mathematics classroom
183-195Views:91Aim of this presentation is to summarize the influence of Tamas Varga on the Italian research and practice concerning didactics of mathematics since the 70s of the 20th centuries. While being in Budapest for the Conference I noticed that this influence was not known by most Hungarian mathematics educators. I guess that also in Italy, only the teacher educators of my generation know Varga’s influence on the teaching and learning of mathematics in primary school. Hence I start from a brief summary of development of mathematics curriculum in Italy (mainly in primary school) in the last decades of the 20th century. I focus some elements that may be connected with Varga’s influence and, later, some recent development of them.
Subject Classification: 97G20, 97-U6, 97A40
-
Guided Discovery in Hungarian Education Using Problem Threads: The Pósa Method in Secondary Mathematics Classrooms
51-67Views:116In Hungary, ‘guided discovery’ refers to instruction in which students learn mathematical concepts through task sequences that foster mathematical thinking. A prominent figure of guided discovery is Lajos Pósa, who developed his method to teach gifted students. Rather than teaching mathematics through thematic blocks, the Pósa Method employs webs of interconnected problem threads in which problems are built on each other, and different threads are presented simultaneously, so that students work on problems from multiple threads at the same time. It was found that this method has been successful as extracurricular training for gifted students since the 1980s; however since 2017, as part of an ongoing research, the method has been applied to mainstream curriculum in two public secondary school classrooms. The present paper examines the design and implementation processes of problem threads in this public secondary school context.
Subject Classification: 97D40
-
Two centuries of the equations of commutativity and associativity of exponentiation
219-233Views:23In this survey article we guide the reader through the solution of the commutative equation of exponentiation x^y = y^x and that of the associative equation of exponentiation x^(y^z) = (x^y)^z. Various characterizations of the integer, rational, real and complex solutions are discussed together with some new results and open directions. The article is supplemented by a detailed and commented bibliography on the history of these equations. -
What can we learn from Tamás Varga’s work regarding the arithmetic-algebra transition?
39-50Views:82Tamás Varga’s Complex Mathematics Education program plays an important role in Hungarian mathematics education. In this program, attention is given to the continuous “movement” between concrete and abstract levels. In the process of transition from arithmetic to algebra, the learner moves from a concrete level to a more abstract level. In our research, we aim to track the transition process from arithmetic to algebra by studying the 5-8-grader textbooks and teacher manuals edited under Tamás Varga's supervision. For this, we use the appearance of “working backward” and “use an equation” heuristic strategies in the examined textbooks and manuals, which play a central role in the mentioned process.
Subject Classification: 97-01, 97-03, 97D50
-
Report of the conference "Connecting Tamás Varga’s Legacy and Current Research in Mathematics Education": November 6-8, 2019, Budapest, Hungary
5-8Views:88On the occasion of the 100th anniversary of the birth of the Hungarian mathematics educator, didactician and reform leader Tamás Varga, a conference on mathematics education has been organized in November 2019 and held at the Hungarian Academy of Science.