Search

Published After
Published Before

Search Results

  • Approximated Poncelet configurations
    163-176
    Views:
    34
    In this short note we present the approximate construction of closed Poncelet configurations using the simulation of a mathematical pendulum. Although the idea goes back to the work of Jacobi ([17]), only the use of modern computer technologies assures the success of the construction. We present also some remarks on using such problems in project based university courses and we present a Matlab program able to produce animated Poncelet configurations with given period. In the same spirit we construct Steiner configurations and we give a few teaching oriented remarks on the Poncelet grid theorem.
  • The hyperbola and Geogebra in high-school instruction
    277-285
    Views:
    35
    In this article the results of teaching/learning hyperbola and its characteristics in high-school using computers and GeoGebra are shown. Students involved in the research attend Engineering School "Nikola Tesla" in Leposavic, Serbia. The aim of the research was to define ways and volume of computer and GeoGebra usage in mathematics instruction in order to increase significantly students' mathematical knowledge and skills.
  • Prime building blocks in the mathematics classroom
    217-228
    Views:
    148

    This theoretical paper is devoted to the presentation of the manifold opportunities in using a little-known but powerful mathematical manipulative, the so-called prime building blocks, originally invented by two close followers of Tamás Varga, to support discovery of various concepts in arithmetic in middle school, including the Fundamental Theorem of Arithmetic or as it is widely taught, prime factorization. The study focuses on a teaching proposal to show how students can learn about greatest common divisor (GCD) and least common multiple (LCM) with understanding, and meanwhile addresses internal connections and levels of abstractness within elementary number theory. The mathematical and methodological background to understanding different aspects of the concept prime property are discussed and the benefits of using prime building blocks to scaffold students’ discovery are highlighted. Although the proposal was designed to be suitable for Hungarian sixth graders, mathematical context and indications for the use of the manipulative in both primary and high school are given.

    Subject Classification: F60, C30, E40, U60

  • An idea which yields a lot of elementary inequalities
    61-72
    Views:
    9
    The aim of the article is to show how studies in higher mathematics can be applied in everyday teaching practice to construct new problems for their pupils. In higher mathematics it is known that the set of real numbers with the addition and multiplication (shortly: (R,+,x)) is an ordered field. Considering a strictly monotonic increasing and continuous function σ with domain ...
    By this idea, using different kinds of functions σ we show a lot of different elementary inequalities.
  • Constructing the disk method formula for the volume obtained by revolving a curve around an axis with the help of CAS
    363-376
    Views:
    32
    Calculus concepts should have been taught in a carefully designed learning environment, because these concepts constitute a very important base for almost all applied sciences. The integral, one of the fundamental concepts of Calculus, has a wide application area. This paper focuses on constructing the disk method formula for the volume obtained by revolving a curve around an axis with the help of a CAS.
    In this study, a semi-structured interview was carried out. In this interview, we tried to construct the disk method formula.
    The levels of constructing the disk method formula in this study are:
    • Introducing the concept: evaluating the volume of an Egyptian pyramid.
    • Evaluating the volume of a cone obtained by revolution (using Maple worksheet).
    • Designing their own ring and evaluating its price (using Maplet).
    In this study, the interview has been presented as a dialog between teacher and students. When we look at feedback from students, we see that such a teaching method effects students in a positive way and causes them to gain conceptual understanding directed towards the concepts of approximation and volume.
  • Why do we complicate the solution of the problem? reflection of Finnish students and teachers on a mathematical summer camp
    405-415
    Views:
    32
    This paper deals with reactions and reflections of Finnish secondary school students and teachers on Hungarian mathematics teaching culture. The experiences were collected at a mathematics summer camp in Hungary.
  • Some thoughts on a student survey
    41-59
    Views:
    32
    The paper analyzes a survey of college students and describes its major findings. The object of the survey, involving 154 students, was to discover and highlight the problems that arise in taking the course Economic Mathematics I. The paper, as the summary of the first phase of a research project, wishes to present these problems, ways that may lead out of them, and possible means of help that can be offered to those taking the course.
  • Radio Frequency Identification from the viewpoint of students of computer science
    241-250
    Views:
    12
    This paper aims at creating the right pedagogical attitudes in term of teaching a new technology, Radio Frequency Identification (RFID) by evaluating the social acceptance of this new method. Survey of future teachers, students of teacher master studies and students from informatics oriented secondary schools were surveyed comparing their attitudes in terms of RFID to other recent technologies. Consequences of this survey are incorporated into the curriculum of the new RFID course at our institution.
  • Zoltán Szvetits (1929-2014): legendary teacher, Zoltán Szvetits passed away
    287-288
    Views:
    12
    The legendary mathematics teacher of Secondary School Fazekas in Debrecen, Zoltán Szvetits passed away on 5th November 2014, at the age of 84. Beginning in 1954 he had been teaching here almost forty years. His pupils and the society of teachers have lost an outstanding teacher character. This secondary school has been well known for decades about its special mathematics class with 10 math lessons a week. This special class was designed and established by Zoltán Szvetits.
  • Solving mathematical problems by using Maple factorization algorithms
    293-297
    Views:
    32
    Computer algebra gives methods for manipulating mathematical expression. In this paper we use the Maple software to solve some elementary problems. Computeraided approach in the instruction of mathematics helps to impart problem solving skills to students.
  • Visualisation in geometry education as a tool for teaching with better understanding
    337-346
    Views:
    166

    In primary and secondary geometry education, some problems exist with pupils’ space thinking and understanding of geometric notions. Visualisation plays an important role in geometry education, and the development of pupils’ visualisation skills can support their spatial imagination. The authors present their own thoughts on the potential of including visualisation in geometry education, based on the analysis of the Hungarian National Core Curriculum and Slovak National Curriculum. Tasks for visualisation are also found in international studies, for example the Programme for International Student Assessment (PISA). Augmented reality (AR) and other information and communication technology (ICT) tools bring new possibilities to develop geometric thinking and space imagination, and they also support mathematics education with better understanding.

    Subject Classification: 97U10, 97G10

  • Heuristic arguments and rigorous proofs in secondary school education
    167-184
    Views:
    32
    In this paper we are going to discuss some possible applications of the mechanical method, especially the lever principle, in order to formulate heuristic conjectures related to the volume of three-dimensional solids. In the secondary school educational processes the heuristic arguments are no less important than the rigorous mathematical proofs. Between the ancient Greek mathematicians Archimedes was the first who made heuristic conjectures with the methods of Mechanics and proved them with the rigorous rules of Mathematics, in a period, when the methods of integration were not known. For a present day mathematician (or a secondary school mathematics teacher) the tools of the definite integral calculus are available in order to calculate the volume of three dimensional bodies, such as paraboloids, ellipsoids, segments of a sphere or segments of an ellipsoid. But in the secondary school educational process, it is also interesting to make heuristic conjectures by the use of the Archimedean method. It can be understood easily, but it is beyond the normal secondary school curriculum, so we recommend it only to the most talented students or to the secondary schools with advanced mathematical teaching programme.
  • Mapping students’ motivation in a problem oriented mathematics classroom
    111-121
    Views:
    65

    This research focuses on mapping students’ motivation by implementing problem-solving activities, namely how the problem-oriented approach affects the students’ commitment, motivation, and attitude to learning. As a practicing teacher, the author faced difficulties with motivation and sought to improve her practice in the form of action research as described in this paper. Based on the literature, the author describes sources of motivation as task interest, social environment, opportunity to discover, knowing why, using objects, and helping others. The author discusses the effect of problem-oriented teaching on the motivation of 7th-grade students. In this paper, the results of two lessons are presented.

    Subject Classification: 97C20, 97D40, 97D50, 97D60

  • Potential, actual and practical variations for teaching functions: cases study in China and France
    157-166
    Views:
    77

    This contribution is based on two major hypotheses: task design is the core of teachers’ work, and variation is the core of task design. Taking into account variation in task design has a profound theoretical foundation in China and France. Developing my PhD with two co-supervisors, in China and France, I wish to seize this opportunity for constructing an analytic model of “teaching mathematics through variation” making profit of this theoretical diversity. This model distinguishes between potential variation and practical variation and is based on the process of transforming potential variation into actual variation, and of using practical variation for rethinking potential variation. The design of this model is based both on theoretical networking, and on case studies, in France and China. In this contribution, we will focus on a critical aspect in the two cases, from potential to practical variation.

    Subject Classification: 97-06

  • The mathematics textbook as an aid to differentiation: a first Hungarian example
    35-53
    Views:
    25
    Differentiation is a way of teaching where each student is taught according to his/her personal needs. This technique is not widely used in Hungary yet, although this would be necessary due to the introduction of the two-level final examination and to a growing concern for equal opportunities and integrated teaching. One of the most significant aids to differentiation is an appropriate textbook, and that is why a group of professionals wrote a set of textbooks that supports this technique. The paper examines the requirements for a differentiated textbook, and the extent to which the textbook in question meets them.
  • Longest runs in coin tossing. Teaching recursive formulae, asymptotic theorems and computer simulations
    261-274
    Views:
    39
    The coin tossing experiment is studied, focusing on higher education. The length of the longest head run can be studied by asymptotic theorems ([3]), by recursive formulae ([10]) or by computer simulations . In this work we make a comparative analysis of recursive formulas, asymptotic results and Monte Carlo simulation for education. We compare the distribution of the longest head run and that of the longest run (i.e. the longest pure heads or pure tails) studying fair coin events. We present a method that helps to understand the concepts and techniques mentioned in the title, which can be a useful didactic tool for colleagues teaching in higher education.
  • Teaching Gröbner bases
    57-76
    Views:
    25
    In this article we offer a demonstration of how the StudentGroebner package, a didactic oriented Maple package for Gröbner basis theory, could assist the teaching/learning process. Our approach is practical. Instead of expounding on deep didactic theory we simply give examples on how we imagine experimental learning in classroom. The educational goal is to prepare the introduction of two sophisticated algorithms, the division algorithm and Buchberger's algorithm, by gathering preliminary knowledge about them.
  • Report on the "English Language Section of Varga Tamás Days 2009"
    169-175
    Views:
    33
    The 9th English Language Section as a part of the Varga Tamás Days was organised by the Department of Mathematics Education at the Teacher Training Institute of the Eötvös Loránd University. We report on the talks and the following discussions in this section.
  • The influence of computer on examining trigonometric functions
    111-123
    Views:
    25
    In this paper the influence of computer on examining trigonometric functions was analyzed throughout the results questionnaire. The students, as usual, had to examine two trigonometric functions, both were given with the appropriate instructions. Three groups were tested. Two of those three groups were prepared with the help of computer and the third one was taught without computer. From the analysis of the questionnaire it follows that the computer has a great influence on understanding of the connections between the graph and very complex calculations.
  • Probabilistic thinking, characteristic features
    13-36
    Views:
    36
    This paper is the first step in a series of a general research project on possible development in probability approach. Our goal is to check with quantitative methods how correct our presumptions formulated during our teaching experience were. In order to get an answer to this question, we conducted a survey among third-year students at our college about their general and scientific concepts as well as about the way they typically think.
  • Mobile devices in Hungarian university statistical education
    19-48
    Views:
    77

    The methodological renewal of university statistics education has been continuous for the last 30 years. During this time, the involvement of technology tools in learning statistics played an important role. In the Introduction, we emphasize the importance of using technological tools in learning statistics, also referring to international research. After that, we firstly examine the methodological development of university statistical education over the past three decades. To do this, we analyze the writings of statistics teachers teaching at various universities in the country. To assess the use of innovative tools, in the second half of the study, we briefly present an online questionnaire survey of students in tertiary economics and an interview survey conducted with statistics teachers.

    Subject Classification: 97-01, 97U70, 87K80

  • Promoting a meaningful learning of double integrals through routes of digital tasks
    107-134
    Views:
    179

    Within a wider project aimed at innovating the teaching of mathematics for freshmen, in this study we describe the design and the implementation of two routes of digital tasks aimed at fostering students' approach to double integrals. The tasks are built on a formative assessment frame and classical works on problem solving. They provide facilitative and response-specific feedback and the possibility to request different hints. In this way, students may be guided to the development of well-connected knowledge, operative and decision-making skills. We investigated the effects of the interaction with the digital tasks on the learning of engineering freshmen, by comparing the behaviours of students who worked with the digital tasks (experimental group, N=19) and students who did not (control group, N=19). We detected that students in the experimental group showed more exibility of thinking and obtained better results in the final exam than students in the control group. The results confirmed the effectiveness of the experimental educational path and offered us interesting indications for further studies.

    Subject Classification: 97D40, 97U70, 44A45

  • Un point d'heuristique important et mal connu: la particularisation
    235-245
    Views:
    28
    Cet article est consacré á la présentation d'un point d'heuristique d'une grande importance et sur lequel on insiste trés peu dans notre enseignement. C'est donc une cause fréquente d'échec pour de nombreux éléves. Il s'agit du procédé consistant á particulariser lorsqu'on dispose d'une hypothése dont l'énoncé commence par "quel que soit...". Plusieurs exemples dans divers domaines des mathématiques sont proposés.
    This article is devoted to the presentation of a point of heuristics of a great importance, and on which we do not lay much emphasis in our teaching. Then, it is a frequent cause of failure for many pupils. It concerns the followings process: to particularize when we dispose of an hypothesis that begins "For any...". Several examples in various domains of mathematics are proposed.
  • "How to be well-connected?" An example for instructional process planning with Problem Graphs
    145-155
    Views:
    96

    Teachers’ design capacity at work is in the focus of didactical research worldwide, and fostering this capacity is unarguably a possible turning point in the conveyance of mathematical knowledge. In Hungary, the tradition hallmarked by Tamás Varga is particularly demanding towards teachers as they are supposed to be able to plan their long-term processes very carefully. In this contribution, an extensive teaching material designed in the spirit of this tradition will be presented from the field of Geometry. For exposing its inner structure, a representational tool, the Problem Graph is introduced. The paper aims to demonstrate that this tool has potential for analyzing existing resources, helping teachers to reflect on their own preparatory and classroom work, and supporting the creation of new designs.

    Subject Classification: 97D40, 97D50, 97D80, 97G10, 97U30

  • A didactic analysis of merge sort
    195-210
    Views:
    23
    Due to technical difficulties, educators teaching merge sort often avoid the analysis of the cost in the general and average cases. Using basic discrete mathematics, elementary real analysis and mathematical induction, we propose a self-contained derivation of bounds αn log_2 n + βn + γ in all cases. Independent of any programming language or pseudo-code, supported by intuitive figures, it is suitable for informatics students interested in the analysis of algorithms. It is also a good exercise in showing that induction allows us to actually discover constants, instead of simply checking them a posteriori.