Search
Search Results
-
The mathematics textbook as an aid to differentiation: a first Hungarian example
35-53Views:25Differentiation is a way of teaching where each student is taught according to his/her personal needs. This technique is not widely used in Hungary yet, although this would be necessary due to the introduction of the two-level final examination and to a growing concern for equal opportunities and integrated teaching. One of the most significant aids to differentiation is an appropriate textbook, and that is why a group of professionals wrote a set of textbooks that supports this technique. The paper examines the requirements for a differentiated textbook, and the extent to which the textbook in question meets them. -
Smartphones and QR-codes in education - a QR-code learning path for Boolean operations
111-120Views:36During the last few years new technologies have become more and more an integrative part of everyday life. The increase of the possession rate of smartphones by young people is especially impressive. This fact asks us educators to think about a didactically and pedagogically well designed integration of smartphones into our lessons and to bring in ideas and concepts. This paper describes a specific learning path where learners can work step by step on the topic Boolean Operations with QR-Code scanners which have been installed on their smartphones. Student teachers for mathematics who completed the learning path took part in a survey where they were asked questions about their willingness to integrate smartphones into their lessons. The results of the survey are presented in the second part of the paper. -
Group Work at High School According to the Method of Tamás Varga
167-176Views:79The aim of our research is to develop students’ logical thinking. For this reason, Hungarian mathematics teachers need to be encouraged to try new methods which induce greater student involvement. Research all over the world prove that self-instruction or self-verbalizing has high effect on the learning process. This was one of the key elements of Tamás Varga’s experiment in high school. In our classroom experiments we are using a special cooperative method from Kagan among 14-18 years old students, called Sage and Scribe structure. We are looking for the answers to the following question: Does this method make mathematics lessons more enjoyable and more comfortable for students? Furthermore, we assume this structure could open the gate toward other collaborative and cooperative teaching technics.
Subject Classification: 97D40
-
Experiences in the education of mathematics during the digital curriculum from the perspective of high school students
111-128Views:170Due to the COVID-19 epidemic, Hungarian schools had to switch to a digital curriculum for an extended period between 2019 and 2021. In this article, we report on the experiences regarding the education of mathematics during the digital curriculum in the light of the reinstated on-site education, all through the eyes of high school students. Distance education brought pedagogical renewal to the lives of many groups. Students were asked about the positives and negatives of this situation.
Subject Classification: 97C90
-
Facilitating class attendance to improve student achievements
77-90Views:29Many studies have revealed that attendance is strongly associated with students' achievements, and have proposed different strategies to improve students' attendance. However, there are few studies investigating how to efficiently take students' attendance – the key component to improve students' attendance. Taking attendance manually is inefficient since it will consume part of the limited class time. This paper describes the design and the implementation of an online attendance system that is currently used in classes at West Virginia University and California University of Pennsylvania. Examples of the system are provided online. Implementation codes of the system are shared, which can be used to teach computer science courses such as Web Programming or Client-Server Script Languages. -
Freudenthal fantasy on the bus, an American adaptation
133-142Views:62In the 1960’s two mathematicians, Hans Freudenthal in the Netherlands and Tamás Varga in Hungary, had argued that people learn mathematics by being actively involved and investigating realistic mathematical problems. Their method lives on in today’s teaching and learning through the various components of cooperative and active learning, by taking ownership in learning, and learning through student dialogue. The goal is to create a welcoming classroom atmosphere in which play takes the front seat. One such scenario is visiting various (animal) stations at the zoo by bus (illustrated by pictures). Passengers are getting on and off the bus at each station (illustrated by arrows), which is modeled on the open number line. This adapted and modified action research was carried out with 5-yearl-old children in public schools of Staten Island, NY in 2019.
Subject Classification: 97D40, 97F20, 97F30
-
Verification of human-level proof steps in mathematics education
345-362Views:12Automated mathematics tutorial systems need support from a reasoning module which can verify the correctness of students' contributions. However, current systems typically do not reason at a level similar to the student's reasoning level, and do not fully account for underspecified or ambiguous inputs. We present a domain-independent method for automatically verifying correct proof steps and detecting standard reasoning errors. We use a depth limited BFS proof search to determine and maintain multiple possible interpretations consistent with the given proof step, we are able to resolve or otherwise propagate underspecification and ambiguity which occurs due to unrestricted user input. Our approach has been implemented in ΩmegaCoRe. -
Mathematics teachers' reasons to use (or not) intentional errors
263-282Views:34Mathematics teachers can make use of both spontaneously arising and intentionally planted errors. Open questions about both types of errors were answered by 23 Finnish middle-school teachers. Their reasons to use or not to use errors were analyzed qualitatively. Seven categories were found: Activation and discussion, Analyzing skills, Correcting misconceptions, Learning to live with errors, (Mis)remembering errors, (Mis)understanding error and Time. Compared to earlier results, the teachers placed substantially less emphasis on affective issues, whereas the answers yielded new distinctions in cognitive dimensions. In particular, teachers' inclination to see errors as distractions could be divided into two aspects: students misunderstanding an error in the first place or student forgetting that an error was erroneous. Furthermore, the content analysis revealed generally positive beliefs towards using errors but some reservations about using intentional errors. Teachers viewed intentional errors mainly positively as possibilities for discussion, analysis and learning to live with mistakes. -
An examination of descriptive statistical knowledge of 12th-grade secondary school students - comparing and analysing their answers to closed and open questions
63-81Views:74In this article, we examine the conceptual knowledge of 12th-grade students in the field of descriptive statistics (hereafter statistics), how their knowledge is aligned with the output requirements, and how they can apply their conceptual knowledge in terms of means, graphs, and dispersion indicators. What is the proportion and the result of their answers to (semi-)open questions for which they have the necessary conceptual knowledge, but which they encounter less frequently (or not at all) in the classroom and during questioning? In spring 2020, before the outbreak of the pandemic in Hungary, a traditional-classroom, “paper-based” survey was conducted with 159 graduating students and their teachers from 3 secondary schools. According to the results of the survey, the majority of students have no difficulties in solving the type of tasks included in the final exam. Solving more complex, open-ended tasks with longer texts is more challenging, despite having all the tools to solve them, based on their conceptual knowledge and comprehension skills. A valuable supplement to the analysis and interpretation of the results is the student attitudes test, also included in the questionnaire.
Subject Classification: 97K40, 97-11, 97D60
-
Teaching reliability theory with the Computer Algebra System Maxima
45-75Views:32The use of the Computer Algebra System Maxima as a teaching aid in an MSc module in Reliability Theory is described here. Extracts from student handouts are used to show how the ideas in Reliability Theory are developed and how they are intertwined with their applications implemented in Maxima. Three themes from the lectures are used to illustrate this: (1) Normal Approximations, (2) Markov Modelling, (3) Laplace Transform Techniques.
It is argued that Maxima is a good tool for the task, since: it is fairly easy to learn & use; it is well documented; it has extensive facilities; it is available for any operating system; and, finally, it can be freely downloaded from the Web. Maxima proves to be a useful tool even for Reliability research for certain tasks. This latter feature provides a seamless link from teaching to research – an important feature in postgraduate education. -
Taking learning styles into consideration in e-learning based education
385-396Views:38In improving electronic teaching material processes we should take the student's learning styles or methods into consideration. The ways learners receive information may be shared into three categories (modalities): visual, auditory, kinesthetic (tactile). In this paper I present some pedagogical questions of the electronic teaching-learning environment, offer a brief survey of the different learning style theories and emphasise the importance of the modalities in encoding information. The electronic teaching material should encourage the learner to choose an appropriate form of syllabus by which his knowledge can become more efficient. -
The appearance of the characteristic features of the mathematical thinking in the thinking of a chess player
201-211Views:34It is more and more important in 21st century's education that not only facts and subject knowledge should be taught but also the ways and methods of thinking should be learnt by students. Thinking is a human specificity which is significant both in mathematics and chess. The exercises aimed at beginner chess players are appropriate to demonstrate to students the mathematical thinking of 12-14 year-old students.
Playing chess is an abstract activity. During the game we use abstract concepts (e.g. sacrifice, stalemate). When solving a chess problem we use logical quantifiers frequently (e.g. in the case of any move of white, black has a move that...). Among the endgames we find many examples (e.g. exceptional draw options) that state impossibility. Affirmation of existence is frequent in a mate position with many moves. We know there is a mate but the question in these cases is how it can be delivered.
We present the chess problem on beginners' level although these exercises appear in the game of advanced players and chess masters too, in a more complex form. We chose the mathematical tasks from arithmetic, number theory, geometry and the topic of equations. Students encounter these in classes, admission exams and student circles. Revealing the common features of mathematical and chess thinking shows how we can help the development of students' mathematical skills with the education of chess. -
Gamification in Higher Education
87-106Views:451The way of thinking and the way of life of the today's children and teenagers have changed radically. Some of the well-established pedagogical methods that were used for decades have become obsolete. Therefore, we need to look for a new method to approach Generations Z and Alpha. Gamification, which has been known since 2010 and means the use of game elements in other areas of life, offers an opportunity to do so.
In addition to a brief description of gamification, my article shows some possibilities for using it at the university. Furthermore, I investigate the impact of gamification on the student in "Algorithms and Data Structures" university course.Subject Classification: 97P30
-
Preliminary e ects of mathematics curriculum development for primary school student teachers in Sárospatak Comenius Campus
95-107Views:31Hungarian students' mathematics performance has been getting weaker in the past few years. A possible solution to stop this tendency is to develop curriculum. Therefore, Hungarian researchers have been refining a particular framework of curriculum development in primary school teacher training programmes. The national curriculum is designed on the assumption that learning can be broken into a sequence of levels and students can evenly succeed in gaining knowledge at successive levels. In this paper, we want to discuss how to reduce students' difficulties with different background to grow competence at successive levels. -
E-learning management systems in Hungarian higher education
357-383Views:34Computers, informatics, and information technology have an ever-increasing role in the establishment and spread of new educational forms and methods. The role of e-learning as a new educational model is increasing in the world of computer networks, because of a widespread access to the net and a growing demand for learning beside work.
Technological elements of e-learning can be separated as Learning Management System, authoring system, course material and a browser. Learning Management System is the software package that creates the structure of the whole educational process: course organisation, course material presentation, tracking student work, recording results, and the completion of the program.
This publication shows examples of Learning Management Systems used in Hungarian higher education. Summarizing and systematizing expectations and demands expressed in connection with learning management systems, the present work tries to help the reader orientate on an ever-expanding market. -
Comparing the IT skills and the programming knowledge of Hungarian students specialized in informatics with Romanian students attending a science course or a mathematics-informatics course
21-40Views:33The goal of this research is an analysis of the IT skills and programming knowledge of Hungarian and Romanian students attending a Science course or a Mathematics-Informatics course. Analysed was how effectively can students from different grades answer questions dealing with different subjects. After having evaluated the test results correctness of the original presumption emerged. Significance level was 5% through the analysis. Significant divergency in knowledge of Hungarian students and Romanian students of Humanities (Profil Uman) was found in 11th and 12th grades too. Romanian students attending a science course (Profil Real) and a Mathematics-Informatics course scored higher in programming than their Hungarian counterparts specialized in Informatics in the 11th grade. After the evaluation a final conclusion can be made: Romanian students of the Real Profile have the same or more practice in programming than Hungarian students specialized in Informatics, though the latters have the same or better IT skills. Unfortunately, Hungarian teachers concentrate on word processing and spreadsheet calculation and teach programming just for the students specialized in Informatics, although algorithm thinking would be important for every student before finishing secondary school. -
Wichtige Momente aus der ungarischen Geschichte des Analysisunterrichts
57-76Views:76Törner et al. (2014) paper gives an outstanding review about teaching analysis at high school level in (Western) Europe. We tried to extend this paper with some results from the Hungarian Math History (Beke and Rátz 1897-1924, after second World War 1949-1960, the current situation-first of all based on schoolbooks, and we also included an experiment from 1984-1989 by E. Deák, which was interrupted and partially forgotten). In summary, this paper deals with the turning points of the brief history of teaching secondary school analysis in the XXth century in Hungary, including some conclusions at the end.
Subject Classification: 97A30, 97C30, 97D30, 97E50, 97I20, 97I40, 97U20