Search
Search Results
-
Mitigation activities to reduce emission of agricultural greenhouse gases in Hungary
115-119Views:151Pressure on natural resources and the global environment have been identified as the most important challenges to maintain prosperity and improve environmental care. Agriculture is responsible for only a small proportion of carbon dioxide (CO2) emissions, but the sector is more closely associated with emissions of other greenhouse gases such as methane (CH4) and nitrous oxide (N2O). The global warming potential of agricultural activities defined as greenhouse gas (GHG) emissions in CO2 equivalents is relatively low in Hungary, when calculated per land area. However this difference decline, when a GHG emission is calculated per product unit, as yields are lower then in West European countries. Environmental load caused by agriculture is also low in Hungary, where increasing part of EU resources are used for the long-term preservation of natural resources and for the raising of awareness of sustainable farming. The strength of the environmental situation of Hungary, consist of several elements, such as the rich bio-diversity, the significant size of territories falling under natural protection, the extent and importance of forests and the low environmental load from crop production. Among the weaknesses the nitrate load of the animal husbandry farms, the increasing water and wind erosion, the soil compaction and degradation have to be taken into consideration. Climate change has high risk potential and the mitigation activities of the New Hungary Rural Development Programme (HRDP) are investigated in this paper with the aim to increase mitigation activities in rural area and reduce the causes of climate change.
-
Green house gas mitigation and headline targets of Europe 2020 strategy
109-117Views:160Climate change is considered as one of the biggest challenges of XXI century and global action is needed to mitigate greenhouse gases (GHG) and adapt to changing water levels and temperatures, which affect food supply and ecosystem integrity. Climate change will have significant economic and social impacts in many regions of EU and sectors like agriculture is considered to bear greater adverse affects. Less developed regions and certain sections of society (the elderly and/or low-income households) are expected to suffer more from climate change. Climate change policy of EU, adopted in December 2008, includes ambitious targets for 2020. The policy is focused on a sustainable future with an energy-efficient economy by (i) cutting greenhouse gases by 20% (30% if international agreement is reached), (ii) reducing energy consumption by 20% through increased energy efficiency and iii) meeting 20% of energy needs from renewable sources. In the frame of the headline targets of Europe 2020 Strategy, this paper discusses most important greenhouse gas-emitting activities in agriculture, emphasizes the importance structural changes through the modernisation of infrastructure particularly in developing regions of EU and calls for enhancing the competitiveness of economy to promote energy efficiency.
-
Adaptations to potential impacts of climate change in the “New Hungary” Rural Development Programme
133-137Views:169There are evidences that the climate is changing and the effects on agriculture and wildlife are discernible. Spring is occurring earlier and autumn later, all of which have impacts on agriculture and forestry. Climate change is also predicted to result in more frequent droughts, increased flooding in Hungary, but the relationship between agriculture and climate change is more complex. Climate change has physical effects on farming and farm based wildlife. Agriculture needs to adapt to climate change by exploring, which crops and farming systems are best adapted to the changed conditions. Land management also needs to adapt to preserve biodiversity by protecting valuable habitats and species and helping them in the changing environment. With better management, agriculture and forestry can also mitigate climate change by reducing direct greenhouse gas emissions from land use, land use change and forestry, by producing crops as a source of renewable energy and by protecting carbon stored in soils and in manure. The HRDP comprises of a series of funding based on the following overarching priorities: (i) enhance the environment and countryside, (ii) making agriculture and forestry more competitive and sustainable, (iii) enhancing opportunity in rural areas, whether in the farming sector or the broader rural economy. Actions discussed in this paper are based on the New Hungary Rural Development Programme (2007–2013) and focused on reducing the effects of climate change in rural area. Establishment of agro-forestry systems and integrated pest management help mitigation goals and increase climate change adaptation potential. Minimizing unwanted side effects of agriculture by reducing the use of fertilizer and increasing the safety for environment (soil, water, and air) and human health have positive effects on adaptation potential. Restoration of agricultural production though diversification of agriculture and pastures management, improvement in drain age and irrigation equipment are good examples of adaptation for climate change. Integrated production, which is oriented to controlled cultivation of crops, vine, fruits and vegetables, and improvement of animal rearing conditions to increase production standards and overall welfare are preferred and ecologically sound methods of adaptation.
-
The effects of climate change on cereals yield of production and food security in Gambia
83-92Views:1017Increasingly, empirical evidences are substantiating the effects of climate change on agricultural production is a reality. In the early part of the 20th century many were skeptical about the so-called climate change that is due to global warming. The Intergovernmental Panel on Climate Change (IPCC, 2007) defines climate change as follows: “climate change refers to a change in the state of the climate that can be identified by changes in the mean or variability of its properties and that persists for extended periods, typically decades or longer” This study analyses the impact of climate change on cereals production (millet and maize) in the Gambia using a time series data for a period of 46 years (1960 – 2013) at an aggregate level to assess the relationship between climate (temperatures and rainfall,) and non-climate variables fertilizer, area planted respectively and yield. The specific objectives of the research are: (1) How climate change affects the expected cereals (Millet and Maize) output or yield in the Gambia. (2) How the level of output risk within cereals (Millet and Maize) farming is affected? In order to achieve these set objectives, the paper will adopt Just and Pope modified Ricardian production functions for climate change impact assessments (e.g., Chen et al. 2004), the paper will also control for the impacts of regular input factors in the production process. The study used a data set for the Gambia comprising variables relevant for cereals production and climate information from 1960 through 2013. There is strong evidence that climate will affects Maize and Millet; according to the analysis 77% and 44% of the variability in the yield of Maize and Millet respectively is explained by the climate and non-climate variables included in the model. Given the effects of climate variables on cereals production, and increasing climate change vulnerabilities on other food production section, the result of this paper will add voice to the growing call for policy makers to step up funding in research and development in climate change adaptation and mitigation.
JEL classification: Q54