Search

Published After
Published Before

Search Results

  • The Frobenius exchange problem on competitions and in classroom
    203-218
    Views:
    10
    Let a_1, ..., a_n be relatively prime positive integers. The still unsolved Frobenius problem asks for the largest integer which cannot be represented as Σ x_i a_i with non-negative integers xi, and also for the number of non-representable positive integers. These and several related questions have been investigated by many prominent mathematicians, including Paul Erdős, and a wide range of partial results were obtained by various interesting methods differing both in character and difficulty. In this paper we give a self-contained introduction to this field through problems and comments suitable also for treatment in a class of talented students.
  • Expressiveness of programming languages and environments: a comparative study
    111-141
    Views:
    31
    In written and oral communication tools, the support of the understanding of our message have an important role: we can increase the expressiveness and the level of understanding of our topic by approaching it in several ways, i.e. in written methods by highlighting the important parts; in oral by changing tone and other elements of non-verbal communication. In this paper programming languages and developing environments are compared with each other in terms of their methods and their level of support to the solution of programming tasks.
    There is a need to have these tools in programming and, of course, in teaching programming. What are the factors that define the distinctness and the legibility of a program? What are the basic principles which give an instrument in programmers' and students' hands in order to create a properly working program from already existing algorithms in the most efficient way? We search for the answers to these questions in this paper.
  • The Project Method and investigation in school mathematics
    241-255
    Views:
    39
    The Project Method (PM) is becoming more common in the teaching of mathematics. Most of the time, Project Method means solving open and relatively wide formulated problems for the application of particular mathematical topics and the solving of everyday life problems.
    At present many experts in the theory of teaching mathematics advocate teaching activities as the characteristic for most mathematical work in the classroom. Thus, there is a question: whether it is possible or eventual desirable to use the PM for solving genuine mathematical problems. This paper deals with this question and discusses the connection between the PM and investigation of new mathematical knowledge for students. Our experience has shown that the PM in connection with investigations can be a useful and effective approach to teaching mathematics.
  • Teaching undergraduate mathematics - a problem solving course for first year
    183-206
    Views:
    102

    In this paper we describe a problem solving course for first year undergraduate mathematics students who would be future school teachers.

    Subject Classification: 97B50, 97B70, 97D50, 97D60, 97F60, 97U30

  • Report of Meeting Researches in Didactics of Mathematics and Computer Sciences: January 27-29, 2017 Budapest, Hungary
    109-128
    Views:
    12
    The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Budapest, Hungary from the 27th to the 29th of January, 2017 at Eötvös Lorand University. It was organized by the Doctoral School of Mathematical and Computational Sciences of University of Debrecen and the Department of Mathematics Teaching and Education Centre Institute of Mathematics.
    The 62 participants – including 43 lecturers and 20 PhD students – came from 7 countries, 22 cities and represented 35 institutions of higher and secondary education.
  • A didactic analysis of merge sort
    195-210
    Views:
    22
    Due to technical difficulties, educators teaching merge sort often avoid the analysis of the cost in the general and average cases. Using basic discrete mathematics, elementary real analysis and mathematical induction, we propose a self-contained derivation of bounds αn log_2 n + βn + γ in all cases. Independent of any programming language or pseudo-code, supported by intuitive figures, it is suitable for informatics students interested in the analysis of algorithms. It is also a good exercise in showing that induction allows us to actually discover constants, instead of simply checking them a posteriori.
  • Experiences using CAS and multimedia int teaching vectorcalculus
    363-382
    Views:
    31
    The development of informatics brings new opportunities that need reevaluating of the teaching concepts. For this reason we have performed a comprehensive educational development for engineering students. Our main goals were to work out a new educational strategy, to develop the needed package of the subject material, to introduce the strategy in the practice, to analyze and evaluate the experiences. In the developed and adapted teaching-learning strategy the teacher is the organizer, designer and the manager of the process. In this paper we summarize the concepts, the results and experiences of the 3-years-long development.
  • Prime building blocks in the mathematics classroom
    217-228
    Views:
    148

    This theoretical paper is devoted to the presentation of the manifold opportunities in using a little-known but powerful mathematical manipulative, the so-called prime building blocks, originally invented by two close followers of Tamás Varga, to support discovery of various concepts in arithmetic in middle school, including the Fundamental Theorem of Arithmetic or as it is widely taught, prime factorization. The study focuses on a teaching proposal to show how students can learn about greatest common divisor (GCD) and least common multiple (LCM) with understanding, and meanwhile addresses internal connections and levels of abstractness within elementary number theory. The mathematical and methodological background to understanding different aspects of the concept prime property are discussed and the benefits of using prime building blocks to scaffold students’ discovery are highlighted. Although the proposal was designed to be suitable for Hungarian sixth graders, mathematical context and indications for the use of the manipulative in both primary and high school are given.

    Subject Classification: F60, C30, E40, U60

  • Teachers and the interactive whiteboards
    281-298
    Views:
    27
    The spread of IWB (Interactive WhiteBoard) around the world changes, reforms and modernizes the traditional teaching methods. We can find these new ICT devices in more and more schools in Hungary as well and the use of it is getting widespread in everyday teaching. The teachers have the greatest role in the proper use of IWB during the lessons and they are also responsible for providing students with creative and motivating tasks lesson by lesson. In the following research, the advantages of the IWB are highlighted, the difficulties of its usage and the teachers' attitude towards the new ICT devices by asking 205 teachers from different primary and secondary schools. The results are mainly based on questionnaires.
  • Programming Theorems and Their Applications
    213-241
    Views:
    117

    One of the effective methodological approaches in programming that supports the design and development of reliable software is analogy-based programming. Within this framework, the method of problem reduction plays a key role. Reducing a given problem to another one whose solving algorithm is already known can be made more efficient by the application of programming theorems. These represent proven, abstract solutions – in a general form – to some of the most common problems in programming. In this article, we present six fundamental programming theorems as well as pose five sample problems. In solving these problems, all six programming theorems will be applied. In the process of reduction, we will employ a concise specification language. Programming theorems and solutions to the problems will be given using the structogram form. However, we will use pseudocodes as descriptions of algorithms resembling their actual implementation in Python. A functional style solution to one of the problems will also be presented, which is to illustrate that for the implementation in Python, it is sufficient to give the specification of the problem for the design of the solution. The content of the article essentially corresponds to that of the introductory lectures of a course we offered to students enrolled in the Applied Mathematics specialization.

    Subject Classification: D40

  • Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 28 – January 30, 2011, Satu Mare, Romania
    159-179
    Views:
    12
    The meeting Researches in Didactics of Mathematics and Computer Science was held in Satu-Mare, Romania from the 28th to the 30th of January, 2011. The 46 Hungarian participants – including 34 lecturers and 12 PhD students – came from 3 countries, 14 cities and represented 20 institutions of higher education. The abstract of the talks and the posters and also the list of participants are presented in this report.
  • Teaching of financial mathematics using Maple
    289-301
    Views:
    52
    The paper deals with the application of computer algebra system Maple in teaching of financial mathematics. In the Czech Republic financial mathematics is included in the curricula of grammar and secondary school. Therefore, this subject is also taught at pedagogical faculties. Most concepts of financial mathematics are difficult to understand for students. In the paper we show the ways of facilitation understanding these concepts using tools of Maple. The main result is in preparing special maplets which enable interactive studying of the principles of such concepts. Each of these maplets deals with particular financial problem from real life, e.g. mortgage credit, consumer credit, credit card etc.
  • Statistical inference in school
    265-273
    Views:
    24
    The paper explains a classroom example for convincing students about the utility and applicability of statistical methods in learning getting people's opinions. The emphasis is on convincing instead of proving. The necessary statistical data may be obtained from the Internet as a digital text.
  • Difference lists in Prolog
    73-87
    Views:
    26
    Prolog is taught at Bradford University within the two-semester module Symbolic and Declarative Computing/Artificial Intelligence. Second year undergraduate students are taught here the basics of the functional and the logic programming paradigms, the latter by using the Linux implementation of SWI Prolog [6]. The topic 'Difference lists' is mentioned in traditional textbooks such as [2] and [5] but it was felt that the available texts do not quite serve our purposes. We present here a lecture handout and a laboratory sheet for the teaching sessions on Difference lists. It is believed that the lectures and lab sessions together with the handouts shown here are a gentle, self-contained and reasoned introduction into the topic. The figures here shown to illustrate the concepts are considered a special feature of the handouts which in this form do not seem to be well known.
  • Combinatorics – competition – Excel
    427-435
    Views:
    31
    In 2001 the Informatics Points Competition of the Mathematics Journal for Secondary School Students (KÖMAL) was restarted [1]. The editors set themselves an aim to make the formerly mere programming competition a bit more varied. Therefore, every month there has been published a spreadsheet problem, a part of which was related to combinatorics. This article is intended to discuss the above mentioned problems and the solutions given to them at competitions. We will prove that traditional mathematical and programming tasks can be solved with a system developed for application purposes when applying a different way of thinking.
  • On the legacy of G. Pólya: some new (old) aspects of mathematical problem solving and relations to teaching
    169-189
    Views:
    36
    In this article are given some new aspects of mathematical problem solving. A framework is presented by three main resources: (1) Pólya's studies about mathematical heuristics are augmented by information drawn from a study of the history of mathematical problem solving. (2) Connections are presented between mathematical problem solving and mathematical beliefs. (3) Experience with a special program for mathematical talented students is sketched. On this background a new textbook-series has been developed and some teaching examples are taken from this context. An outlook is given on some new research on teaching of problem solving, including possible relations to modern brain research.
  • Regula falsi in lower secondary school education II
    121-142
    Views:
    93

    The aim of this paper is to investigate the pupils' word problem solving strategies in lower secondary school education. Students prior experiences with solving word problems by arithmetic methods can create serious difficulties in the transition from arithmetic to algebra. The arithmetical methods are mainly based on manipulation with numbers. When pupils are faced with the methods of algebra they often have difficulty in formulating algebraic equations to represent the information given in word problems. Their troubles are manifested in the meaning they give to the unknown, their interpretation what an equation is, and the methods they choose to set up and solve equations. Therefore they mainly use arithmetical and numerical checking methods to solve word problems. In this situation it is necessary to introduce alternative methods which make the transition from arithmetic to algebra more smooth. In the following we will give a detailed presentation of the false position method. In our opinion this method is useful in the lower secondary school educational processes, especially to reduce the great number of random trial-and-error problem solving attempts among the lower secondary school pupils. We will also show the results of some problem solving activities among grade 6-8 pupils. We analysed their problem solving strategies and we compared our findings with the results of other research works.

    Subject Classification: 97-03, 97-11, 97B10, 97B50, 97D40, 97F10, 97H10, 97H20, 97H30, 97N10, 97N20

  • Über die Verwendung von Maple für die Simulation von Mechanismen
    21-39
    Views:
    25
    Maple is used to do numerical computation, plot graphs and do exact symbolic manipulations and word processing. This paper demonstrates how Maple can be used for the simulation of mechanisms. This offers the possibility for students to become familiar with this particular section of mathematical modelling. The mechanism under consideration is a so-called F-mechanisms, i.e., a planar parallel 3-RRR robot with three synchronously driven cranks. It turns out that at this example it is not possible to find the poses of the moving triangle exactly by graphical methods with traditional instruments only. Hence, numerical methods are essential for the analysis of motions which can be performed by an F-mechanism.
  • Algorithmics of the knapsack type tasks
    37-71
    Views:
    27
    We propose a new kind of approach of the teaching of knapsack type problems in the classroom. We will remind you the context of the general knapsack-task and we will classify it, including the two most popular task variants: the discrete and the continuous one. Once we briefly present the solving algorithm of the continuous variant, we will focus on the solving of the discrete task, and we will determine the complexity of the algorithms, looking for different optimizing possibilities. All these issues are presented in a useful way for highschool teachers, who are preparing students in order to participate in different programming contests.
  • Report of Meeting Researches in Didactics of Mathematics and Computer Sciences, April 1-3, 2022 Baja, Hungary
    135-155
    Views:
    156

    The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Baja, Hungary, at Eötvös József College, from the 1st to the 3th of April, 2022. It was organized by the Doctoral School of Mathematical and Computational Sciences of the University of Debrecen and by Eötvös József College. The 62 participants - including 18 PhD students - came from 8 countries and represented 26 institutions of higher and secondary education. There were 3 plenary and 40 session talks in the program.

  • Interactive web portals in mathematics
    347-361
    Views:
    18
    Many of the recent problems in higher education (less contact seminars, the heterogeneity and the increasing number of our students) call for new instructional methods. At University of Szeged we have developed a mathematical web portal which can offer a solution for such problems among the changing circumstances. This freely available, easy-to-use web-surface supports interactive mathematical problem-solving and student self assessment. Our computer program cooperates with a lot of free software (computer algebra systems, formula parsers, converters, word processors). WebMathematics Interactive has been available for the public since June 2002 on its web page http://wmi.math.u-szeged.hu.
  • Nice tiling, nice geometry!?!
    269-280
    Views:
    38
    The squared papers in our booklets, or the squared (maybe black and white) pavements in the streets arise an amusing problem: How to deform the side segments of the square pattern, so that the side lines further remain equal (congruent) to each other? More precisely, we require that each congruent transformation of the new pattern, mapping any deformed side segment onto another one, leaves the whole (infinitely extended) pattern invariant (unchanged).
    It turns out that there are exactly 14 types of such edge-transitive (or so-called isotoxal) quadrangle tilings, sometimes with two different forms (e.g. black and white) of quadrangles (see Figure 2). Such a collection of tiling can be very nice, perhaps also useful for decorative pavements in streets, in flats, etc.
    I shall sketch the solution of the problem that leads to fine (and important) mathematical concepts (as barycentric triangulation of a polygonal tiling, adjacency operations, adjacency matrix, symmetry group of a tiling, D-symbol, etc). All these can be discussed in an enjoyable way, e.g. in a special mathematical circle of a secondary school, or in more elementary form as visually attractive figures in a primary school as well.
    My colleague, István Prok [11] developed an attractive computer program on the Euclidean plane crystallographic groups with a nice interactive play (for free download), see our Figures 3-5.
    A complete classification of such Euclidean plane tilings (not only with quadrangles) can be interesting for university students as well, hopefully also for the Reader (Audience). This is why I shall give some references, where you find also other ones.
    Further problems indicate the efficiency of this theory now. All these demonstrate the usual procedure of mathematics and the (teaching) methodology as well: We start with a concrete problem, then extend it further, step-by-step by creating new manipulations, concepts and methods. So we get a theory at certain abstraction level. Then newer problems arise, etc.
    This paper is an extended version of the presentation and the conference paper [7]. The author thanks the Organizers, especially their head Professor Margita Pavlekovic for the invitation, support and for the kind atmosphere of the conference.
  • Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 30 - February 1, 2009, Debrecen, Hungary
    165-186
    Views:
    17
    The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Debrecen, Hungary from January 30 to February 1, 2009. The 49 Hungarian participants – including 15 PhD students – came from 18 cities and represented 29 institutions of higher education. The abstracts of the talks and the posters and also the list of participants are presented in this report.
  • Sequenced problems for functional equations
    179-192
    Views:
    11
    There are many possible methods to solve equations of the form H(f(x + y), f(x − y), f(x), f(y), x, y) = 0 (x, y 2 R), where H is a known function and f is the unknown function to be determined. Here we will create a sequence of problems for equations of type (1) (see on the next page). These sequenced problems are appropriate for the fostering of talented students on different level of mathematical education.
  • Report of Meeting Researches in Didactics of Mathematics and Computer Sciences: January 26-28, 2018 Hajdúszoboszló, Hungary
    131-153
    Views:
    10
    The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Hajdúszoboszló, Hungary from the 26th to the 28th of January, 2018. It was organized by the Doctoral School of Mathematical and Computational Sciences of University of Debrecen.
    The 61 participants – including 47 lectures and 17 PhD students – came from 8 countries, 21 cities and represented 37 institutions of higher and secondary education.