Search
Search Results
-
Report on the Conference of History of Mathematics & Teaching of Mathematics with Special Subject Ethno-mathematics: Research in History of Mathematics & Teaching of Mathematics : University of Miskolc, 18–21 May, 2006, Miskolc, Hungary
437-449Views:35The 4th Conference on History of Mathematics & Teaching of Mathematics with Special Subject Ethno-mathematics was organized at the University of Miskolc (Hungary). The aim of the conference was to present aspects of the History of Mathematics and Ethno-mathematics, including its impact on the Teaching of Mathematics.
Its motto was: Mathematics – a common language for Europe for thousand years.
There were 21 presentations, a poster lecture (J. Kolumbán, University of Cluj, Romania) and an exhibition made by students of Eötvös University, Budapest (R. Tanács, K. Varga).
After a short historical introduction we present 19 abstracts and the poster lecture. -
Report on the Conference of History of Mathematics and Teaching of Mathematics: research in History of Mathematics and Teaching of Mathematics : University of Szeged 19-23 May, 2010, Szeged, Hungary
319-338Views:36The 6th Conference on the History of Mathematics and Teaching of Mathematics was held in Szeged (Hungary). Its motto reads as:
Mathematics – a common language for Europe for thousand years.
The aim of the conference was to present aspects of History of Mathematics, including its impact on Teaching of Mathematics, to provide a forum to meet each other, and to give an opportunity for young researchers to present their results in these fields. University colleagues, students, graduate students and other researchers were invited. The programme of the Conference included talks and posters. The abstracts of the lectures and the posters are presented in this report. There were 24 presentations and poster lectures. -
Connections between discovery learning through the Pósa Method and the secondary school leaving examination in three Hungarian mathematics classrooms
67-85Views:214The Pósa Method is a guided discovery learning method that has been used in Hungarian education in the form of extracurricular activities for "gifted" mathematics students. A four-year experiment implemented the method in three more "average" classrooms. This article reports on the relationship between the Pósa Method and the standardized secondary school leaving mathematics exam (Matura Exam in short) in Hungary. Data consists of students' survey responses, teacher interviews, and exam results from the three Hungarian classrooms who took part in the four-year experiment. We identify aspects of the Pósa Method that can benefit and hinder exam performance. In addition, we find that learning through the Pósa Method for the four years of high school has adequately prepared students for the exam.
Subject Classification: 97D44, 97D54, 97D64
-
Willy Servais and Tamás Varga A Belgian Hungarian perspective on teaching school mathematics
29-38Views:74Willy Servais and Tamás Varga had a major influence on the development of mathematics education during the 1960s and 1970s, both in their home countries and internationally. In 1971 they jointly published Teaching School Mathematics–A Unesco Source Book, a review of curriculum reforms that were under way in different parts of the world. The book, presenting several modern syllabuses as well as examples of classroom techniques and segments of teacher-student dialogues, provided an often consulted guide to the field of mathematics education. We re-read this book and in this way acquire a unique insight into the modernization efforts of school mathematics during the 1960s and early 1970s. We take this opportunity to discuss the sometimes partly divergent views of Servais and Varga on modern mathematics education as reflected in this book.
Subject Classification: 97-03
-
Analysis of the affective factors of learning mathematics among teacher trainees
225-254Views:39The Hungarian National Core Curricula gives primacy to the development of abilities and the practical application of knowledge. The task of the training programme is primarily to prepare teacher trainees for the teaching and educating profession. As teachers, they are going to plan, organize, help, guide, control and evaluate the learning of mathematics of individuals and groups of students from the age of 6 to 10 (12), and cultivate their mathematical skills, thinking and positive attitude towards any mathematical activities. In order to train educators who are able to meet the above requirements on high standard, it is necessary to update the teacher training programme based on the trainees' preliminary knowledge and motivation level.
The key to learn about the child's mind and achieve conscious development is the systematization of factual knowledge and methodological awareness. The modern, flexible approach to subject pedagogy, based on pedagogy, psychology and epistemology, qualifies trainees to educate learners who understand and like mathematics. Therefore, it is essential to develop the trainees' positive approach to mathematics and arouse their demand for continuous professional improvement. (Programme of the four-year primary school teacher training, 1995.)
In our research we are looking for ways of ascertaining the starting parameters which have influence on the planning of the studies of mathematics and subject pedagogy. In this article we introduce a questionnaire by the means of which we collected information on the trainees' attitude and its changing towards mathematics. With the help of the analysis of the answers we paint a picture of the ELTE TÓFK (Eötvös Loránd University, Faculty of Elementary and Nursery School Teacher's Training) third year students' attitude to the subject, and we compare it to the tendencies noticed in the mass education. The energy invested in learning is influenced by the assumption of the relevance and importance of the subjects. Therefore we considered it also our task to reveal. Besides the students' attitude toward mathematics and their assumption about their own competence we have collected data also on their performance in the subject. Summarising the research results we show the advantages of the questionnaire, and summarise the observations which would indicate need for methodological changes in the mathematics teacher training. -
Herschel's heritage and today's technology integration: a postulated parallel
419-430Views:27During the early 20th century, advocacy of a range of mathematical technologies played a central part in movements for the reform of mathematical education which emphasised ‘practical mathematics' and the ‘mathematical laboratory'. However, as these movements faltered, few of the associated technologies were able to gain and maintain a place in school mathematics. One conspicuous exception was a technology, originally championed by the mathematician Herschel, which successfully permeated the school mathematics curriculum because of its:
• Disciplinary congruence with influential contemporary trends in mathematics.
• External currency in wider mathematical practice beyond the school.
• Adoptive facility of incorporation in classroom practice and curricular activity.
• Educational advantage of perceived benefits outweighing costs and concerns.
An analogous perspective is applied to the situation of new technologies in school mathematics in the early 21st century. At a general level, the cases of calculators and computers are contrasted. At a more specific level, the educational prospects of CAS and DGS are assessed. -
Inquiry based mathematics education and the development of learning trajectories
63-89Views:856This article is based on the panel on inquiry based mathematics education and the development of learning trajectories held at the VARGA 100 Conference. After an introduction presenting the theme and organization of the panel, this article focuses on the diversity of conceptualizations of inquiry based education existing today in mathematics education and their influence on the vision and development of learning trajectories. More precisely, it considers the conceptualizations respectively associated with Realistic Mathematics Education, Genetic Constructivism, Tamás Varga’s educational approach and the Anthropological Theory of the Didactic, presented by the panellists, and also shows the efforts undertaken in European projects to reach consensusal visions.
Subject Classification: 97C30Q, 97D10, 97D20, 97D30, 97D40, 97D50
-
Numerical mathematics with GeoGebra in high school
363-378Views:41We have prepared a suite of motivational examples which illustrate numerical methods for equation solving. Fixed point iteration, Newton's method, secant method and regula falsi method are implemented as GeoGebra tools. Our experience in teaching of numerical mathematics in "Jovan Jovanovic Zmaj" high school in Novi Sad is presented. We have tested pupil proficiency in numerical equation solving with and without use of a computer and the results are presented. -
A retrospective look at discovery learning using the Pósa Method in three Hungarian secondary mathematics classrooms
183-202Views:186While the Pósa Method was originally created for mathematical talent management through extracurricular activities, three "average" public secondary school classrooms in Hungary have taken part in a four-year experiment to implement the Pósa Method, which is based on guided discovery learning of mathematics. In this paper, we examine the students' and teachers' reflections on the Pósa Method, and how student perspectives have changed between their first and last year of high school. Overall, teachers and students had a positive experience with the Pósa Method. Furthermore, our research indicated that this implementation has met several objectives of the Pósa Method, including enjoyment of mathematics and autonomous thinking.
Subject Classification: 97D40
-
Mathematics teachers' reasons to use (or not) intentional errors
263-282Views:34Mathematics teachers can make use of both spontaneously arising and intentionally planted errors. Open questions about both types of errors were answered by 23 Finnish middle-school teachers. Their reasons to use or not to use errors were analyzed qualitatively. Seven categories were found: Activation and discussion, Analyzing skills, Correcting misconceptions, Learning to live with errors, (Mis)remembering errors, (Mis)understanding error and Time. Compared to earlier results, the teachers placed substantially less emphasis on affective issues, whereas the answers yielded new distinctions in cognitive dimensions. In particular, teachers' inclination to see errors as distractions could be divided into two aspects: students misunderstanding an error in the first place or student forgetting that an error was erroneous. Furthermore, the content analysis revealed generally positive beliefs towards using errors but some reservations about using intentional errors. Teachers viewed intentional errors mainly positively as possibilities for discussion, analysis and learning to live with mistakes. -
Better understanding mathematics by algorithmic thinking and computer programming
295-305Views:117Tamás Varga’s mathematics education experiment covered not just mathematics, but also other related topics. In many of his works he clearly stated that computer science can support the understanding of mathematics as much as mathematics supports informatics. On the other hand, not much later than the introduction of the new curriculum in 1978, personal computers started to spread, making it possible to teach informatics in classes and in extracurricular activities. Varga’s guided discovery approach has a didactic value for other age groups as well, not only in primary school. Its long-lasting effect can be observed even in present times. Having reviewed several educational results in the spirit of Tamás Varga, we have decided to present an extracurricular course. It is an open study group for age 12-18. Students solve problems by developing Python programs and, according to our experiences, this results in a deeper understanding of mathematical concepts.
Subject Classification: 97B10, 97B20, 97D50, 97N80, 97P20, 97P30, 97P40, 97P50, 97U70
-
Zur Veränderung des Stellenwertesvon Beweisen im Mathematikunterricht - eine Analyse von ungarischen Abiturprüfungenzwischen 1981 und 2020
35-55Views:71Proofs are not just an essential, crucial part of mathematics as a science, they also have a long tradition in Hungarian mathematics classrooms. However, the school in general and, mathematics education in particular, have been changed in the last few decades enormously, including the final secondary school examinations in mathematics. The current paper's main goal is to answer the question, how has been changed the weight and the content of reasoning and especially proving tasks in the relevant examinations.
Subject Classification: 97E54, 97D64, 97U44
-
Mathematical Laboratory: Semiotic mediation and cultural artefacts in the mathematics classroom
183-195Views:91Aim of this presentation is to summarize the influence of Tamas Varga on the Italian research and practice concerning didactics of mathematics since the 70s of the 20th centuries. While being in Budapest for the Conference I noticed that this influence was not known by most Hungarian mathematics educators. I guess that also in Italy, only the teacher educators of my generation know Varga’s influence on the teaching and learning of mathematics in primary school. Hence I start from a brief summary of development of mathematics curriculum in Italy (mainly in primary school) in the last decades of the 20th century. I focus some elements that may be connected with Varga’s influence and, later, some recent development of them.
Subject Classification: 97G20, 97-U6, 97A40
-
Manipulatives and semiotic tools of Game of Go as playful and creative activity to learn mathematics in early grades in France
197-206Views:63This research develops resources to teach mathematics in French primary school by using the game of Go. A group of searchers, teachers and go players meet at university to produce teaching resources. These resources are implemented in the classroom. Then the group evaluate this implementation and improve the resources. The aim of this classroom research is to study the opportunities of the game of Go to learn mathematics and to propose a teacher training course to implement the game of Go in French primary schools in accordance with the French syllabus. Game of Go appears as a manipulative and semiotic tool to learn mathematics at primary school.
Subject Classification: 97D50, 97U60
-
Comments on the remaining velocity project with reports of school-experiments
117-133Views:14The aim of this article is to introduce different possible solutions to the exercise referring to the calculation of "remaining velocity". We explain the possible approaches to the problem with the help of either using the tools of mathematics or other subjects. During the past few years, we have made Hungarian and Slovakian secondary school students solve the exercise, choosing from both children of average and of high abilities. The experince has shown that very few students were able to solve the problem by themselves, but with the help of their teachers, the exercise and the solution has been an eye-opener experience to all of them. A lot of students were even considering to drive more carefully in the future after getting their driving licenses. -
Conventions of mathematical problems and their solutions in Hungarian secondary school leaving exams
137-146Views:9Collecting and analyzing the conventions indispensable for interpreting mathematical problems and their solutions correctly assist successful education and objective evaluation. Many professional and didactic questions arose while collecting and analyzing these conventions, which needed clarification, therefore the materials involved concisely in the conventions enrich both the theory and practice of mathematics teaching. In our research we concentrated mainly on the problems and solutions of the Hungarian school leaving examinations at secondary level in mathematics. -
Heuristic arguments and rigorous proofs in secondary school education
167-184Views:32In this paper we are going to discuss some possible applications of the mechanical method, especially the lever principle, in order to formulate heuristic conjectures related to the volume of three-dimensional solids. In the secondary school educational processes the heuristic arguments are no less important than the rigorous mathematical proofs. Between the ancient Greek mathematicians Archimedes was the first who made heuristic conjectures with the methods of Mechanics and proved them with the rigorous rules of Mathematics, in a period, when the methods of integration were not known. For a present day mathematician (or a secondary school mathematics teacher) the tools of the definite integral calculus are available in order to calculate the volume of three dimensional bodies, such as paraboloids, ellipsoids, segments of a sphere or segments of an ellipsoid. But in the secondary school educational process, it is also interesting to make heuristic conjectures by the use of the Archimedean method. It can be understood easily, but it is beyond the normal secondary school curriculum, so we recommend it only to the most talented students or to the secondary schools with advanced mathematical teaching programme. -
The hyperbola and Geogebra in high-school instruction
277-285Views:35In this article the results of teaching/learning hyperbola and its characteristics in high-school using computers and GeoGebra are shown. Students involved in the research attend Engineering School "Nikola Tesla" in Leposavic, Serbia. The aim of the research was to define ways and volume of computer and GeoGebra usage in mathematics instruction in order to increase significantly students' mathematical knowledge and skills. -
The Project Method and investigation in school mathematics
241-255Views:40The Project Method (PM) is becoming more common in the teaching of mathematics. Most of the time, Project Method means solving open and relatively wide formulated problems for the application of particular mathematical topics and the solving of everyday life problems.
At present many experts in the theory of teaching mathematics advocate teaching activities as the characteristic for most mathematical work in the classroom. Thus, there is a question: whether it is possible or eventual desirable to use the PM for solving genuine mathematical problems. This paper deals with this question and discusses the connection between the PM and investigation of new mathematical knowledge for students. Our experience has shown that the PM in connection with investigations can be a useful and effective approach to teaching mathematics. -
Problem-solving in mathematics with the help of computers
405-422Views:33One of the most important tasks of the didactics of mathematics is the describing of the process of problem-solving activity and problem-solving thinking. The psychological theories concerning the problem-solving thinking leave the special demand of school subjects out of consideration, and search for connections of universal validity. In this article we attempt to connect an abstract theory of psychology concerning problem-solving thinking and a more practical conception of the problem-solving activity of mathematics, which is based on Polya's idea. In this way we can get a structure of problem-solving, which has scientific bases and at the same time it is useful in computer aided learning. Our result was developed and tested in Hungary so this is suitable especially for the Hungarian conditions of mathematics teaching. -
Teaching of financial mathematics using Maple
289-301Views:54The paper deals with the application of computer algebra system Maple in teaching of financial mathematics. In the Czech Republic financial mathematics is included in the curricula of grammar and secondary school. Therefore, this subject is also taught at pedagogical faculties. Most concepts of financial mathematics are difficult to understand for students. In the paper we show the ways of facilitation understanding these concepts using tools of Maple. The main result is in preparing special maplets which enable interactive studying of the principles of such concepts. Each of these maplets deals with particular financial problem from real life, e.g. mortgage credit, consumer credit, credit card etc. -
Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 23-25, 2015 Novi Sad, Serbia
141-162Views:16The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Novi Sad, Serbia from the 23th to the 25th of January, 2015 at the University of Novi Sad. It was organized by the PhD School of Mathematics and Computer Sciences of the University of Debrecen and the Department of Mathematics and Informatics of the University of Novi Sad.
The 70 participants – including 42 lecturers, and 18 PhD students – came from 9 countries, 28 cities and represented 40 intstitutions of higher education. -
Straight line or line segment? Students’ concepts and their thought processes
327-336Views:100The article focuses on students’ understanding of the concept of a straight line. Attention is paid to whether students of various ages work with only part of a straight line shown or if they are aware that it can be extended. The presented results were obtained by a qualitative analysis of tests given to nearly 1,500 Czech students. The paper introduces the statistics of students’ solutions, and discusses the students’ thought processes. The results show that most of the tested students, even after completing upper secondary school, are not aware that a straight line can be extended. Finally, we present some recommendations for fostering the appropriate concept of a straight line in mathematics teaching.
Subject Classification: 97C30, 97D70, 97G40
-
Report of Meeting Researches in Didactics of Mathematics and Computer Sciences: January 27-29, 2017 Budapest, Hungary
109-128Views:12The meeting Researches in Didactics of Mathematics and Computer Sciences was held in Budapest, Hungary from the 27th to the 29th of January, 2017 at Eötvös Lorand University. It was organized by the Doctoral School of Mathematical and Computational Sciences of University of Debrecen and the Department of Mathematics Teaching and Education Centre Institute of Mathematics.
The 62 participants – including 43 lecturers and 20 PhD students – came from 7 countries, 22 cities and represented 35 institutions of higher and secondary education. -
Report of meeting Researches in Didactics of Mathematics and Computer Sciences: January 24-26, 2014 Eger, Hungary
117-134Views:13The meeting Researches in Didactics of Mathematics and Computer Sciences
was held in Eger, Hungary from the 24th to the 26th of January, 2014 at the
Eszterházy Károly College. It was organized by the PhD School of Mathematics and Computer Sciences of the University of Debrecen and the Eszterházy Károly College in Eger.
The 58 participants – including 43 lecturers and 18 PhD students – came from 7 countries, 15 cities and represented 22 institutions of higher education.