Search
Search Results
-
Some Remarks on History of Mathematical Problem Solving
51-64Views:111In this contribution, it is our goal is to look on history of mathematics as a resource for a long-term study of mathematical problem solving processes and heuristics. In this way we intend to get additional information, e. g., about heuristics which proved to be extremely successful to create new mathematics. "Changing representation" and "false position" are examples of such strategies, which are illustrated by concrete examples to demonstrate the use for classroom teaching and teacher education. Our methods are based on hermeneutic principles. -
CALIBRATE and CAS/DGS resources
267-279Views:89The CALIBRATE project was initiated by the EU with the goal of expanding the use of ICT in education by increasing the amount of available learning resources via resource exchange. Although CAS/DGS can be used to easily create high quality learning resources which are also easily adaptable across national boundaries, such resources are difficult to find at CALIBRATE portals. We believe that this is due to CAS/DGS still being rather exotic to most of the people as well as with the common problem of finding existing appropriate resources. A possible solution is for CALIBRATE portals to properly equip existing and forthcoming CAS/DGS resources with suitable metadata and to provide some integration with CAS/DGS tools, enabling both beginners and power users to create and exchange CAS/DGS resources. -
Solving mathematical problems by using Maple factorization algorithms
293-297Views:112Computer algebra gives methods for manipulating mathematical expression. In this paper we use the Maple software to solve some elementary problems. Computeraided approach in the instruction of mathematics helps to impart problem solving skills to students. -
Why some children fail? Analyzing a test and the possible signs of learning disorders in an answer sheet: dedicated to the memory of Julianna Szendrei
251-268Views:154Teachers and educators in mathematics try to uncover the background of the mistakes their students make for their own and their students' benefit. Doing this they can improve their teaching qualities, and help the cognitive development of their pupils. However, this improvement does not always support their students with learning disorders, since their problem is not caused by wrong attitude or lack of diligence. Therefore, it is the interest of a conscientious teacher to recognize whether the weaker performance of a student is caused by learning disorders, so the helping teacher can give useful advices. Although the teacher is not entirely responsible for the diagnosis, but (s)he should be be familiar with the possible symptoms in order to make suggestions whether or not to take the necessary test of the learning disorders.
In this article, through examining a test and the answer sheet of a single student, I show some signs that might be caused by learning disorders. -
Würfel und Augensummen – ein unmögliches Paar
71-88Views:128It is well known that the values 2, 3, ..., 12 of the sum of eyes that appear when throwing two regular dice are not equally distributed. It can also be shown that no matter how the dice are falsified (or if only one of them is being manipulated) they can never reach the same probability concerning the sum of eyes ([8], 91 et seq.). This discovery can be generalized for n ≥ 2 dice. Various results of algebra and (real) calculus are used, so that a connection between two different mathematical fields can be realized. Such a connection is typical and often provides a large contribution for mathematics (because it frequently leads to a successful attempt of solving a special problem) and therefore examples of this sort should also be included in the mathematical education at schools as well as in the student teachers' university curriculum for the study of mathematics. -
Simple Variations on The Tower of Hanoi: A Study of Recurrences and Proofs by Induction
131-158Views:285The Tower of Hanoi problem was formulated in 1883 by mathematician Edouard Lucas. For over a century, this problem has become familiar to many of us in disciplines such as computer programming, algorithms, and discrete mathematics. Several variations to Lucas' original problem exist today, and interestingly some remain unsolved and continue to ignite research questions. Nevertheless, simple variations can still lead to interesting recurrences, which in turn are associated with exemplary proofs by induction. We explore this richness of the Tower of Hanoi beyond its classical setting to compliment the study of recurrences and proofs by induction, and clarify their pitfalls. Both topics are essential components of any typical introduction to algorithms or discrete mathematics.
Subject Classification: A20, C30, D40, D50, E50, M10, N70, P20, Q30, R20
-
Development and assessment of non-cognitive skills among engineering students: a comparison across two universities
161-182Views:20Non-cognitive skills, such as logical thinking and problem solving, are crucial for success in engineering fields. To assess these skills in undergraduate engineering students, we designed a targeted test comprising four different types of tasks. The study was conducted among students at the Faculty of Engineering at the University of Debrecen, and the Faculty of Mechanical Engineering and Informatics at the University of Miskolc. The aim of this paper is to analyze the test results, gather students’ feedback, and examine the strength of the relationships between deductive reasoning, diagrammatic reasoning, and algebraic thinking.
Subject Classification: 97C20
-
The role of computer in the process of solving of mathematical problems (results of research)
67-80Views:119We would like to present results of an almost two years investigations about the role computer in the process of solving of mathematical problems. In these investigations took part 35 students of the secondary school (generalists) in the age 17–19 years. Each of these students solved following problem:
Find all values of the parameter m so that the function
f(x) = |mx + 1| − |2x − m| is:
a) bounded,
b) bounded only from the bottom,
c) bounded only from above,
first without a computer and next with a special computer program. We would like to show results of these researches. -
Mathematical Doctoral School of the Mathematical Seminar of the University of Debrecen at the beginning of the 20th century (Debrecen, 1927-1940)
195-214Views:159In this article, we present the life and carrier of Professor Lajos Dávid, and those 16 mathematical dissertations, along with their authors, which were written under the supervision of Professor Dávid between 1927 and 1940. At the time mentioned, Lajos Dávid was the leader of the Mathematical Seminar of the University of Debrecen. The themes of the dissertations were connected with his scientific work, such as the history of mathematics (the two Bolyais), or his research work in mathematical analysis (arithmetic-geometric mean). -
Smartphones and QR-codes in education - a QR-code learning path for Boolean operations
111-120Views:104During the last few years new technologies have become more and more an integrative part of everyday life. The increase of the possession rate of smartphones by young people is especially impressive. This fact asks us educators to think about a didactically and pedagogically well designed integration of smartphones into our lessons and to bring in ideas and concepts. This paper describes a specific learning path where learners can work step by step on the topic Boolean Operations with QR-Code scanners which have been installed on their smartphones. Student teachers for mathematics who completed the learning path took part in a survey where they were asked questions about their willingness to integrate smartphones into their lessons. The results of the survey are presented in the second part of the paper. -
Compositions of dilations and isometries in calculator-based dynamic geometry
257-266Views:89In an exploratory study pre-service elementary school teachers constructed dilations and isometries for figures drawn and transformed using dynamic geometry on calculators. Observational and self assessments of the constructed images showed that the future teachers developed high levels of confidence in their abilities to construct compositions of the geometric transformations. Scores on follow-up assessment items indicated that the prospective teachers' levels of expertise corresponded to their levels of confidence. Conclusions indicated that dynamic geometry on the calculator was an appropriate technology, but one that required careful planning, to develop these future teachers' expertise with the compositions. -
The time spent on board games pays off: links between board game playing and competency motivation
119-131Views:292The impact playing has on the development of thinking is an important topic of psychology of learning, brain research and mathematics didactics.
Our research is also connected to the aforementioned topic. We investigated the effects of playing board games on competence motivation and the development of mathematical competencies.
In this paper, we present the results of an experiment carried out in a secondary school class.
The experimental group spent one of three weekly mathematics lessons playing board games.
Apart from the several advantages of playing games in general, we can conclude that, based on the results of the national competence measurement, the mathematical competence of the students developed properly.
The readiness and the progress of the pupils were compared on the basis of input and output tests and an initial knowledge measurement and, at the same time, we compared their level of mathematical competence with the results of the national competence
measurement.Subject Classification: 97C70, 97D40
-
Examining continuity/discontinuity of a function by using GeoGebra
241-257Views:147The possibility to visualize the things with the help of today's dynamic software (GeoGebra being one of them), enables the students to see and explore mathematical relations and concepts that were difficult to be presented in the past, prior to the state-of-the-art technologies. In methodological sense, the contribution of this paper lies in the presentation of a set of visualizations designed to help students better understand and explore the basic calculus concepts such as continuity at a point, to examine discontinuity at a point, to display discontinuities and the relations between continuity and differentiability of single variable functions. In technical sense, this paper presents creative GeoGebra applets which offer new possibilities that could be of a vital importance for the future development of e-learning of College mathematics. -
Bemerkungen zur Prototypentheorie – Begriffs - und Konzeptbildung
365-389Views:83Psychological theories of prototypes are put forward by mathematical modelling. Some didactical consequences are discussed on the background of this analysis. By the help of an example (classification of convex quadrangles) hints are given for didactical interpretations of actual models of cognitive psychology dealing with problems of constructing prototypes. -
Integral part problems derived from a solution of an in mum problem
43-53Views:89In this paper, we solve the following two integral part problems:
Find all r ϵ R satisfying r^2 = [r]*([r]+1), resp. r^2≤[r]*([r]+1).
These problems have been mainly motivated by a solution of an infimum problem of Z. Boros and Á. Száz. -
Radio Frequency Identification from the viewpoint of students of computer science
241-250Views:94This paper aims at creating the right pedagogical attitudes in term of teaching a new technology, Radio Frequency Identification (RFID) by evaluating the social acceptance of this new method. Survey of future teachers, students of teacher master studies and students from informatics oriented secondary schools were surveyed comparing their attitudes in terms of RFID to other recent technologies. Consequences of this survey are incorporated into the curriculum of the new RFID course at our institution. -
Kompetenzstreben und Kompetenzerwerb: Funktionale didaktische Fördermöglichkeiten durch Differenzierung und Individualisierung
1-52Views:104As a first glimpse of specific research endeavours the most important components of competence motivation are discussed in relation to didactical questions of gaining competence by inner differentiation and individualization: self-efficacy, optimal challenge, intrinsic motivation, exploration needs, internal attribution, self-determination motivation, defense of self-worth, self-concept, and achievement motivation. In this sense "competence" means ever changing standards of self-regulation of an individual interacting with the various cognitive and emotional demands of his/her environment.
In fulfilling these requirements a prototypical example of inner differentiation in mathematics instruction is given. This didactical elaboration is available as a selfinstructing unit in Hungarian and German language within the "Electronic periodical of the Department of Methodology of Mathematics" which can be reached under http://mathdid.inhun.com. -
Rational errors in learning fractions among 5th grade students
347-358Views:148Our paper focuses on empirical research in which we map out the errors in learning fractions. Errors are often logically consistent and rule-based rather than being random. When people face solving an unfamiliar problem, they usually construct rules or strategies in order to solve it (Van Lehn, 1983). These strategies tend to be systematic, often make ‘sense’ to the people who created them but often lead to incorrect solutions (Ben-Zeev, 1996). These mistakes were named rational errors by Ben-Zeev (1996). The research aims to show that when learning fractions, students produce such errors, identified in the literature, and that students who make these kinds of mistakes achieve low results in mathematics tests. The research was done among 5th-grade students.
Subject Classification: 97C10, 97C30, 97C70, 97D60, 97D70, 97F50
-
Differentiated instruction not only for Mathematics teachers
163-182Views:254The aim of differentiated development in a heterogeneous group of learners (DDHG) is to reduce school leaving without education, using an adaptive and innovative teaching-learning environment and using the most effective strategies, methods and techniques. Furthermore, this strategy helps in developing skills for learners and building cooperation between learners in heterogeneous classes through the use of the special, status-management educational procedure, and finally its strength is to sort the status ranking among learners, and to change the social structure of the class. Our goal is to figure out how to share best practices with teachers. One of the effective ways to renew teaching practice is through further training for teachers. As a trainer of the Logic-based subprogram of the Complex Basic Program (CBP) the author of the paper has experienced how well logic-based and decision-making strategies work in other subjects as well as in mathematics.
Subject Classification: 97D40
-
Outstanding mathematicians in the 20th century: András Rapcsák (1914-1993)
99-110Views:134In this paper we commemorate the life and work of András Rapcsák on the occasion of the centenary of his birth. He was an outstanding professor and a scholar teacher. He was head of the Department of Geometry (1958-1973) and the director of the Institute of Mathematics at the University of Debrecen (Hungary). He played an important role in the life of the University of Debrecen. He was the rector of this university between 1966 and 1973.
At the beginning of his career he taught at secondary schools in several towns. He wrote mathematical schoolbooks with coauthors. He also taught at Teacher's College in Debrecen and in Eger.
He became to interested in differential geometry under the influence of Ottó Varga. The fields of his research were line-element spaces and related areas. He was elected an Ordinary Member of the Hungarian Academy of Science in 1965. He wrote 21 papers, 8 school and textbooks and 3 articles in didactics of mathematics. -
Teaching Fourier series, partial differential equations and their applications with help of computer algebra system
51-68Views:109In this paper, some examples of Fourier series and partial difference equations will be shown to demonstrate opportunities for CAS use in various circumstances. The well-known white-box – black-box teaching-learning techniques and the modularization will be used to allow the use of the same worksheet in different ways. -
Thoughts on Pólya’s legacy
157-160Views:203There is a saying, "the older I get, the smarter my parents become." What it means, of course, is that the more we learn, the more we appreciate the wisdom of our forebears. For me, that is certainly the case with regard to George Pólya.
There is no need to elaborate on Pólya's contributions to mathematics – he was one of the greats. See, for example, Gerald Alexanderson's (2000) edited volume The Random Walks of George Pólya, or Pólya's extended obituary (really, a
53-page homage) in the November 1987 Bulletin of the London Mathematical Society (Chung et al., 1987). Pólya was one of the most important classical analysts of the 20th century, with his influence extending into number theory, geometry, probability and combinatorics. -
Examining relation between talent and competence through an experiment among 11th grade students
17-34Views:120The areas of competencies that are formable, that are to be formed and developed by teaching mathematics are well-usable in recognizing talent. We can examine the competencies of a student, we can examine the competencies required to solve a certain exercise, or what competencies an exercise improves.
I studied two exercises of a test taken by students of the IT specialty segment of class 11.d of Jedlik Ányos High School, a class that I teach. These exercises were parts of the thematic unit of Combinatorics and Graph Theory. I analysed what competencies a gifted student has, and what competencies I need to improve while teaching mathematics. I summarized my experience about the solutions of the students, the ways I can take care of the gifted students, and what to do to the less gifted ones. -
Prime building blocks in the mathematics classroom
217-228Views:272This theoretical paper is devoted to the presentation of the manifold opportunities in using a little-known but powerful mathematical manipulative, the so-called prime building blocks, originally invented by two close followers of Tamás Varga, to support discovery of various concepts in arithmetic in middle school, including the Fundamental Theorem of Arithmetic or as it is widely taught, prime factorization. The study focuses on a teaching proposal to show how students can learn about greatest common divisor (GCD) and least common multiple (LCM) with understanding, and meanwhile addresses internal connections and levels of abstractness within elementary number theory. The mathematical and methodological background to understanding different aspects of the concept prime property are discussed and the benefits of using prime building blocks to scaffold students’ discovery are highlighted. Although the proposal was designed to be suitable for Hungarian sixth graders, mathematical context and indications for the use of the manipulative in both primary and high school are given.
Subject Classification: F60, C30, E40, U60
-
Zoltán Szvetits (1929-2014): legendary teacher, Zoltán Szvetits passed away
287-288Views:61The legendary mathematics teacher of Secondary School Fazekas in Debrecen, Zoltán Szvetits passed away on 5th November 2014, at the age of 84. Beginning in 1954 he had been teaching here almost forty years. His pupils and the society of teachers have lost an outstanding teacher character. This secondary school has been well known for decades about its special mathematics class with 10 math lessons a week. This special class was designed and established by Zoltán Szvetits.