Search

Published After
Published Before

Search Results

  • Group Work at High School According to the Method of Tamás Varga
    167-176
    Views:
    44

    The aim of our research is to develop students’ logical thinking. For this reason, Hungarian mathematics teachers need to be encouraged to try new methods which induce greater student involvement. Research all over the world prove that self-instruction or self-verbalizing has high effect on the learning process. This was one of the key elements of Tamás Varga’s experiment in high school. In our classroom experiments we are using a special cooperative method from Kagan among 14-18 years old students, called Sage and Scribe structure. We are looking for the answers to the following question: Does this method make mathematics lessons more enjoyable and more comfortable for students? Furthermore, we assume this structure could open the gate toward other collaborative and cooperative teaching technics.

    Subject Classification: 97D40

  • Correction to Gofen (2013): "Powers which commute or associate as solutions of ODEs?", Teaching Mathematics and Computer Science 11 (2013), 241-254.
    245
    Views:
    50

    In the article "Powers which commute or associate as solutions of ODEs?" by Alexander Gofen (Teaching Mathematics and Computer Science, 2013, 11(2), 241–254. https://doi.org/10.5485/TMCS.2013.0347), there was an error in Conjecture 1 (p. 250), and consequently, in the References (p. 254).

  • Looking back on Pólya’s teaching of problem solving
    207-217
    Views:
    136

    This article is a personal reflection on Pólya's work on problem solving, supported by a re-reading of some of his books and viewing his film Let Us Teach Guessing. Pólya's work has had lasting impact on the goals of school mathematics, especially in establishing solving problems (including non-routine problems) as a major goal and in establishing the elements of how to teach for problem solving. His work demonstrated the importance of choosing rich problems for students to explore, equipping them with some heuristic strategies and metacognitive awareness of the problem solving process, and promoting 'looking back' as a way of learning from the problem solving experience. The ideas are all still influential. What has changed most is the nature of classrooms, with the subsequent appreciation of a supporting yet challenging classroom where students work collaboratively and play an active role in classroom discussion.

    Subject Classification: 97D50, 97A30

  • "On the way" to the function concept - experiences of a teaching experiment
    17-39
    Views:
    46

    Knowing, comprehending and applying the function concept is essential not only from the aspect of dealing with mathematics but with several scientific fields such as engineering. Since most mathematical notions cannot be acquired in one step (Vinner, 1983) the development of the function concept is a long process, either. One of the goals of the process is evolving an "ideal" concept image (the image is interrelated with the definition of the concept). Such concept image plays an important role in solving problems of engineering. This study reports on the beginning of a research aiming the scholastic forming of the students' function concept image i.e. on the experiences of a "pilot" study. By the experiment, we are looking for the answer of the following question: how can the analysis of such function relations be built into the studied period (8th grade) of the evolving process of the function concept that students meet in everyday life and also in engineering life?

    Subject Classification: D43, U73

  • Potential, actual and practical variations for teaching functions: cases study in China and France
    157-166
    Views:
    35

    This contribution is based on two major hypotheses: task design is the core of teachers’ work, and variation is the core of task design. Taking into account variation in task design has a profound theoretical foundation in China and France. Developing my PhD with two co-supervisors, in China and France, I wish to seize this opportunity for constructing an analytic model of “teaching mathematics through variation” making profit of this theoretical diversity. This model distinguishes between potential variation and practical variation and is based on the process of transforming potential variation into actual variation, and of using practical variation for rethinking potential variation. The design of this model is based both on theoretical networking, and on case studies, in France and China. In this contribution, we will focus on a critical aspect in the two cases, from potential to practical variation.

    Subject Classification: 97-06

  • Our digital education habits in the light of their environmental impact: the role of green computing in education
    69-86
    Views:
    70

    With the increasing use of IT tools, the environmental impacts they generate have also increased. Education is increasingly relying on digital tools to become a major emitter of CO2 itself. Therefore, the task of education is to teach future generations how to use IT tools efficiently while being environmentally aware. In addition to some forms of green computing, we show the level and ratio of those teachers who have corresponding IT knowledge in the Hungarian education. In this study, we present the justification of the problem through a case study, which estimates the Internet traffic of a website streaming popular educational resources. In addition, we will examine the extent to which national and international educational organization and guidance documents address the development of digital environmentally aware thinking. Based on the content of this study, we suggest some considerations for content developers to decide if they really need to create the digital content.

    Subject Classification: 97P99, 94-06, 94-02

  • A constructive and metacognitive teaching path at university level on the Principle of Mathematical Induction: focus on the students' behaviours, productions and awareness
    133-161
    Views:
    60

    We present the main results about a teaching/learning path for engineering university students devoted to the Principle of Mathematical Induction (PMI). The path, of constructive and metacognitive type, is aimed at fostering an aware and meaningful learning of PMI and it is based on providing students with a range of explorations and conjecturing activities, after which the formulation of the statement of the PMI is devolved to the students themselves, organized in working groups. A specific focus is put on the quantification in the statement of PMI to bring students to a deep understanding and a mature view of PMI as a convincing method of proof. The results show the effectiveness of the metacognitive reflections on each phase of the path for what concerns a) students' handling of structural complexity of the PMI, b) students' conceptualization of quantification as a key element for the reification of the proving process by PMI; c) students' perception of the PMI as a convincing method of proof.

    Subject Classification: 97B40, 97C70

  • Mobile devices in Hungarian university statistical education
    19-48
    Views:
    51

    The methodological renewal of university statistics education has been continuous for the last 30 years. During this time, the involvement of technology tools in learning statistics played an important role. In the Introduction, we emphasize the importance of using technological tools in learning statistics, also referring to international research. After that, we firstly examine the methodological development of university statistical education over the past three decades. To do this, we analyze the writings of statistics teachers teaching at various universities in the country. To assess the use of innovative tools, in the second half of the study, we briefly present an online questionnaire survey of students in tertiary economics and an interview survey conducted with statistics teachers.

    Subject Classification: 97-01, 97U70, 87K80

  • "How to be well-connected?" An example for instructional process planning with Problem Graphs
    145-155
    Views:
    56

    Teachers’ design capacity at work is in the focus of didactical research worldwide, and fostering this capacity is unarguably a possible turning point in the conveyance of mathematical knowledge. In Hungary, the tradition hallmarked by Tamás Varga is particularly demanding towards teachers as they are supposed to be able to plan their long-term processes very carefully. In this contribution, an extensive teaching material designed in the spirit of this tradition will be presented from the field of Geometry. For exposing its inner structure, a representational tool, the Problem Graph is introduced. The paper aims to demonstrate that this tool has potential for analyzing existing resources, helping teachers to reflect on their own preparatory and classroom work, and supporting the creation of new designs.

    Subject Classification: 97D40, 97D50, 97D80, 97G10, 97U30

  • Pólya’s influence on (my) research
    161-171
    Views:
    78

    In this article, I outline the influence of George Pólya's work on research in different areas and especially on mathematics education, namely heuristics and models of the problem-solving process. On a more personal note, I will go into some details regarding Pólya's influence on my own work in mathematical problem solving with a focus on the research project for my PhD thesis.

    Subject Classification: 97xxx

  • The role of representations constructed by students in learning how to solve the transportation problem
    129-148
    Views:
    39

    The purpose of the research presented in this paper was to study the role of concrete and table representations created by students in learning how to solve an optimization problem called the transportation problem. This topic was learned in collaborative groups using table representations suggested by teachers in 2021. In 2022, the researchers decided to enrich the students’ learning environment with concrete objects and urged the students to use them to present the problem to be solved. The students did it successfully and, to be able to record it in their notebooks, they constructed a table representation by themselves without any help from their teacher. After that, they managed to solve the problem by manipulating the objects. At the same time, each step in the solution was presented with changes in the table. The students were assessed before (pre-test) and after collaborative learning (test) in both academic years. The pre-test results were similar, but the test results were better in 2022. Therefore, it can be concluded that using concrete and table representations constructed by students in learning how to solve transportation problems makes collaborative learning more constructivist and more effective than when they use only table representations suggested by their teachers.

    Subject Classification: 97M10, 97M40

  • Freudenthal fantasy on the bus, an American adaptation
    133-142
    Views:
    29

    In the 1960’s two mathematicians, Hans Freudenthal in the Netherlands and Tamás Varga in Hungary, had argued that people learn mathematics by being actively involved and investigating realistic mathematical problems. Their method lives on in today’s teaching and learning through the various components of cooperative and active learning, by taking ownership in learning, and learning through student dialogue. The goal is to create a welcoming classroom atmosphere in which play takes the front seat. One such scenario is visiting various (animal) stations at the zoo by bus (illustrated by pictures). Passengers are getting on and off the bus at each station (illustrated by arrows), which is modeled on the open number line. This adapted and modified action research was carried out with 5-yearl-old children in public schools of Staten Island, NY in 2019.

    Subject Classification: 97D40, 97F20, 97F30

  • Word problems in different textbooks at the early stage of teaching mathematics comparative analysis
    31-49
    Views:
    86

    In a previous research, Csíkos and Szitányi (2019) studied teachers’ views and pedagogical content knowledge on the teaching of mathematical word problems. While doing so, they reviewed and compared Eastern European textbooks of Romania, Russia, Slovakia, Croatia, and Hungary to see how world problem-solving strategies are presented in commonly used textbooks. Their results suggested that teachers, in general, agreed with the approach of the textbooks regarding the explicit solution strategies and the types of word problems used for teaching problem-solving. They also revealed that the majority of the participants agreed that a word problem-solving algorithm should be introduced to the students as early as in the first school year. These results have been presented at the Varga 100 Conference in November 2019. As the findings suggested a remarkable similarity between the Eastern European textbook approaches, in the current study we decided to conduct further research involving more textbooks from China, Finland, and the United States.

    Subject Classification: 97U20, 08A50

  • Promoting a meaningful learning of double integrals through routes of digital tasks
    107-134
    Views:
    110

    Within a wider project aimed at innovating the teaching of mathematics for freshmen, in this study we describe the design and the implementation of two routes of digital tasks aimed at fostering students' approach to double integrals. The tasks are built on a formative assessment frame and classical works on problem solving. They provide facilitative and response-specific feedback and the possibility to request different hints. In this way, students may be guided to the development of well-connected knowledge, operative and decision-making skills. We investigated the effects of the interaction with the digital tasks on the learning of engineering freshmen, by comparing the behaviours of students who worked with the digital tasks (experimental group, N=19) and students who did not (control group, N=19). We detected that students in the experimental group showed more exibility of thinking and obtained better results in the final exam than students in the control group. The results confirmed the effectiveness of the experimental educational path and offered us interesting indications for further studies.

    Subject Classification: 97D40, 97U70, 44A45

  • An examination of descriptive statistical knowledge of 12th-grade secondary school students - comparing and analysing their answers to closed and open questions
    63-81
    Views:
    36

    In this article, we examine the conceptual knowledge of 12th-grade students in the field of descriptive statistics (hereafter statistics), how their knowledge is aligned with the output requirements, and how they can apply their conceptual knowledge in terms of means, graphs, and dispersion indicators. What is the proportion and the result of their answers to (semi-)open questions for which they have the necessary conceptual knowledge, but which they encounter less frequently (or not at all) in the classroom and during questioning? In spring 2020, before the outbreak of the pandemic in Hungary, a traditional-classroom, “paper-based” survey was conducted with 159 graduating students and their teachers from 3 secondary schools. According to the results of the survey, the majority of students have no difficulties in solving the type of tasks included in the final exam. Solving more complex, open-ended tasks with longer texts is more challenging, despite having all the tools to solve them, based on their conceptual knowledge and comprehension skills. A valuable supplement to the analysis and interpretation of the results is the student attitudes test, also included in the questionnaire.

    Subject Classification: 97K40, 97-11, 97D60

  • A computational thinking problem-thread for grade 7 students and above from the Pósa method
    101-110
    Views:
    66

    Lajos Pósa has been developing his “learning through discovery” (Győri & Juhász, 2018) method since 1988. His weekend math camps are focused on fostering problem-solving skills and high-level mathematical-thinking skills in gifted students from grades 7 to 11. One of the core aspects of the method is the structure of the problems, all problems are part of a complex, intertwined, and rich network. In this article we analyze a computational thinking problem-thread and its role in the camps’s network of problems (Gosztonyi, 2019), and show some aspects of the method. The insights gained using this method can be useful in other contexts. The possible adaptation of the method to secondary and high schools is briefly discussed as well.

    Subject Classification: 97D40

  • Programming Theorems and Their Applications
    213-241
    Views:
    75

    One of the effective methodological approaches in programming that supports the design and development of reliable software is analogy-based programming. Within this framework, the method of problem reduction plays a key role. Reducing a given problem to another one whose solving algorithm is already known can be made more efficient by the application of programming theorems. These represent proven, abstract solutions – in a general form – to some of the most common problems in programming. In this article, we present six fundamental programming theorems as well as pose five sample problems. In solving these problems, all six programming theorems will be applied. In the process of reduction, we will employ a concise specification language. Programming theorems and solutions to the problems will be given using the structogram form. However, we will use pseudocodes as descriptions of algorithms resembling their actual implementation in Python. A functional style solution to one of the problems will also be presented, which is to illustrate that for the implementation in Python, it is sufficient to give the specification of the problem for the design of the solution. The content of the article essentially corresponds to that of the introductory lectures of a course we offered to students enrolled in the Applied Mathematics specialization.

    Subject Classification: D40