Search

Published After
Published Before

Search Results

  • Das Konzept des Analysisunterrichts von Professor Igor Kluvánek – einige Ergebnisse der qualitativen Forschung
    349-361
    Views:
    30
    A renowned Slovak mathematician Professor Igor Kluvanek (1931-1993) during his affiliation with the University of Adelaide in Australia (1968-1990) has worked out a unique course of mathematical analysis for future high school teachers of mathematics. The course has been tested in its conceptual form but, as a whole, it still awaits its publication in the form of a monograph. Along these lines, our aim is to present the way he has introduced some key notions of differential calculus and to discuss its advantages. Central is the continuity of a function via which the limit and the derivative of a function at a point is defined.
  • Integrating Didactic Games in Higher Education: Benefits and Challenges
    1-15
    Views:
    452

    In our paper, we study the reasons for the introduction of didactic games and the way of their application in higher education, especially in teaching mathematics. After describing the main characteristics and needs of Generation Z students, we outline the advantages and drawbacks of gamification and game-based learning, followed by some new aspects to their classification. The idea of device-based grouping arose because the most commonly used methods require IC tools. Gen Zs naturally accept gamified learning materials available on digital and mobile platforms, but we must not forget about traditional games either. In higher education, especially in the case of small-group teaching there should also be room for traditional, specialized didactic games, of which we focus on the benefits of card games.

    Subject Classification: 97C70, 97D20, 97D40, 97U70

  • Willy Servais and Tamás Varga A Belgian Hungarian perspective on teaching school mathematics
    29-38
    Views:
    74

    Willy Servais and Tamás Varga had a major influence on the development of mathematics education during the 1960s and 1970s, both in their home countries and internationally. In 1971 they jointly published Teaching School Mathematics–A Unesco Source Book, a review of curriculum reforms that were under way in different parts of the world. The book, presenting several modern syllabuses as well as examples of classroom techniques and segments of teacher-student dialogues, provided an often consulted guide to the field of mathematics education. We re-read this book and in this way acquire a unique insight into the modernization efforts of school mathematics during the 1960s and early 1970s. We take this opportunity to discuss the sometimes partly divergent views of Servais and Varga on modern mathematics education as reflected in this book.

    Subject Classification: 97-03

  • A role of geometry in the frame of competencies attainment
    41-55
    Views:
    30
    We discuss aspects of the Education Reform from teaching to educational system. In this context we recognize some problems in recognition of some competencies that students need to achieve and we present how we have developed the measurement method of spatial abilities and problem solving competence. Especially, we investigate how students use spatial visualization abilities in solving various problems in other mathematical course. We have tested how students use their spatial abilities previously developed in geometry courses based on conceptual approach to solve a test based on procedural concept in Mathematical Analysis course.
  • Tamás Varga’s reform movement and the Hungarian Guided Discovery approach
    11-28
    Views:
    155

    This paper presents Tamás Varga’s work focusing especially on the Hungarian Complex Mathematics Education reform project led by him between 1963 and 1978 and the underlying conception on mathematics education named “Guided Discovery approach”. In the first part, I describe Varga’s career. In the second part, I situate his reform project in its international and national historical context, including the international “New Math” movement and the “Guided Discovery” teaching tradition, something which is embedded in Hungarian mathematical culture. In the third part, I propose a didactic analysis of Varga’s conception on mathematics education, underlining especially certain of its characteristics which can be related to Inquiry Based Mathematics Education. Finally I briefly discuss Varga’s legacy today.

    Subject Classification: 97-03, 97B20, 97D20, 97D40, 97D50

  • A mathematical and didactical analysis of the concept of orientation
    111-130
    Views:
    41
    The development of spatial ability, in particular the development of spatial orientation is one of the aims of mathematics education.
    In my work, I examine the concept of orientation, especially concepts of between, left, right, below, above, front, back, clockwise and anticlockwise. I analyze answers given for a simple orientation task prepared for elementary school pupils. I would like to call attention to the difficulties pupils have even in case of solving simple orientation problems.
    We have different ways to know more about the crucial points of a concept, especially of the concept of orientation. In this study I bring out one of them. I analyze and make some didactical conclusions about the origin and the axiomatic structure of orientation.
  • Learning and teaching combinatorics with Sage
    389-398
    Views:
    45
    Learning Mathematics is not an easy task, since this subject works with especially abstract concepts and sophisticated deductions. Many students lose their interest in the subject due to lack of success. Computer algebra systems (CAS) provide new ways of learning and teaching Mathematics. Numerous teachers use them to demonstrate concepts, deductions and algorithms and to make learning process more interesting especially in higher education. It is an even more efficient way to improve the learning process, if students can use the system themselves, which helps them to practice the curriculum.
    Sage is a free, open-source math software system that supports research and teaching algebra, analysis, geometry, number theory, cryptography, numerical computation, and related areas. I have been using it for several years to aid the instruction of Discrete Mathematics at Óbuda University. In this article I show some examples how representations provided by this system can help in teaching combinatorics.
  • Visualisation in geometry education as a tool for teaching with better understanding
    337-346
    Views:
    165

    In primary and secondary geometry education, some problems exist with pupils’ space thinking and understanding of geometric notions. Visualisation plays an important role in geometry education, and the development of pupils’ visualisation skills can support their spatial imagination. The authors present their own thoughts on the potential of including visualisation in geometry education, based on the analysis of the Hungarian National Core Curriculum and Slovak National Curriculum. Tasks for visualisation are also found in international studies, for example the Programme for International Student Assessment (PISA). Augmented reality (AR) and other information and communication technology (ICT) tools bring new possibilities to develop geometric thinking and space imagination, and they also support mathematics education with better understanding.

    Subject Classification: 97U10, 97G10

  • Über die Verwendung von Maple für die Simulation von Mechanismen
    21-39
    Views:
    25
    Maple is used to do numerical computation, plot graphs and do exact symbolic manipulations and word processing. This paper demonstrates how Maple can be used for the simulation of mechanisms. This offers the possibility for students to become familiar with this particular section of mathematical modelling. The mechanism under consideration is a so-called F-mechanisms, i.e., a planar parallel 3-RRR robot with three synchronously driven cranks. It turns out that at this example it is not possible to find the poses of the moving triangle exactly by graphical methods with traditional instruments only. Hence, numerical methods are essential for the analysis of motions which can be performed by an F-mechanism.
  • Illustrated analysis of Rule of Four using Maple
    383-404
    Views:
    37
    Rule of Four, as a basic didactic principle, was formulated among the NCTM 2000 standards (see [14]) and since then it is quoted by numerous books and publications (see [4], [9], [12]). Practically we can say it is accepted by the community of didactic experts. The usage of the Rule of Four, however, has been realized mainly in the field of calculus, in fact certain authors restrict the wording of the principle to the calculus itself (e.g. [3]).
    Calculus is a pleasant field, indeed. A sequence of values of a function provides us with example for numeric representation, while the formula and the graph of the function illustrate symbolic and graphical representations, respectively. In the end by wording the basic features of the function on natural language we gain textual representation.
    This idyllic scene, however, becomes more complex when we leave the frame of calculus. In this paper we investigate the consequences of the usage of Rule of Four outside calculus. We discuss the different types of representations and show several examples which make the multiple features of representation evident. The examples are from different fields of mathematics and are created by the computer algebra system Maple, which turns out to be an excellent tool for illustration and visualization of the maim features of mathematical objects.
    Next we introduce the concept of basic representation and rational representation, which is considered as the mathematical notion of "didactic usable" or "didactic rational" representation. In the end we generalize the notion of numeric representation, which leads us a more widely usable didactic principle which can be considered as a generalization of Rule of Four.
  • Proof step analysis for proof tutoring - a learning approach to granularity
    325-343
    Views:
    31
    We present a proof step diagnosis module based on the mathematical assistant system Ωmega. The task of this module is to evaluate proof steps as typically uttered by students in tutoring sessions on mathematical proofs. In particular, we categorise the step size of proof steps performed by the student, in order to recognise if they are appropriate with respect to the student model. We propose an approach which builds on reconstructions of the proof in question via automated proof search using a cognitively motivated proof calculus. Our approach employs learning techniques and incorporates a student model, and our diagnosis module can be adjusted to different domains and users. We present a first evaluation based on empirical data.
  • Word problems in different textbooks at the early stage of teaching mathematics comparative analysis
    31-49
    Views:
    151

    In a previous research, Csíkos and Szitányi (2019) studied teachers’ views and pedagogical content knowledge on the teaching of mathematical word problems. While doing so, they reviewed and compared Eastern European textbooks of Romania, Russia, Slovakia, Croatia, and Hungary to see how world problem-solving strategies are presented in commonly used textbooks. Their results suggested that teachers, in general, agreed with the approach of the textbooks regarding the explicit solution strategies and the types of word problems used for teaching problem-solving. They also revealed that the majority of the participants agreed that a word problem-solving algorithm should be introduced to the students as early as in the first school year. These results have been presented at the Varga 100 Conference in November 2019. As the findings suggested a remarkable similarity between the Eastern European textbook approaches, in the current study we decided to conduct further research involving more textbooks from China, Finland, and the United States.

    Subject Classification: 97U20, 08A50

  • Reappraising Learning Technologies from the Viewpoint of the Learning of Mathematics
    221-246
    Views:
    18
    Within the context of secondary and tertiary mathematics education, most so-called learning technologies, such as virtual learning environments, bear little relation to the kinds of technologies contemporary learners use in their free time. Thus they appear alien to them and unlikely to stimulate them toward informal learning. By considering learning technologies from the perspective of the learner, through the analysis of case studies and a literature review, this article asserts that the expectation of these media might have been over-romanticised. This leads to the recommendation of five attributes for mathematical learning technologies to be more relevant to contemporary learners' needs: promoting heuristic activities derived from human history; facilitating the shift from instrumentation to instrumentalisation; facilitating learners' construction of conceptual knowledge that promotes procedural knowledge; providing appropriate scaffolding and assessment; and reappraising the curriculum.
  • Understanding the spatiotemporal sample: a practical view for teaching geologist students
    89-99
    Views:
    25
    One of the most fundamental concept of statistics is the (random) sample. Our experience – acquired during the years of undergraduate education – showed that prior to industrial practice, the students in geology (and, most probably, in many other non-mathematics oriented disciplines as well) are often confused by the possible multiple interpretation of the sample. The confusion increases even further, when samples from stationary temporal, spatial or spatio-temporal phenomena are considered. Our goal in the present paper is to give a viable alternative to this overly mathematical approach, which is proven to be far too demanding for geologist students.
    Using the results of an environmental pollution analysis we tried to show the notion of the spatiotemporal sample and some of its basic characteristics. On the basis of these considerations we give the definition of the spatiotemporal sample in order to be satisfactory from both the theoretical and the practical points of view.
  • On an international training of mathematically talented students: assets of the 20 years of the “Nagy Károly Mathematical Student-meetings”
    77-89
    Views:
    33
    The focus of this paper is to present the gems of the "Nagy Károly Mathematical Student-meetings" in Rév-Komárom (Slovakia) from 1991 to 2010. During these 20 years there was done a lot of work to train mathematically talented students with Hungarian mother tongue and to develop their mathematical thinking, and to teach them problem solving and heuristic strategies for successful acting on the competitions. We collected the most interesting problems and methods presented by the trainer teachers.
  • Straight line or line segment? Students’ concepts and their thought processes
    327-336
    Views:
    100

    The article focuses on students’ understanding of the concept of a straight line. Attention is paid to whether students of various ages work with only part of a straight line shown or if they are aware that it can be extended. The presented results were obtained by a qualitative analysis of tests given to nearly 1,500 Czech students. The paper introduces the statistics of students’ solutions, and discusses the students’ thought processes. The results show that most of the tested students, even after completing upper secondary school, are not aware that a straight line can be extended. Finally, we present some recommendations for fostering the appropriate concept of a straight line in mathematics teaching.

    Subject Classification: 97C30, 97D70, 97G40

  • Why some children fail? Analyzing a test and the possible signs of learning disorders in an answer sheet: dedicated to the memory of Julianna Szendrei
    251-268
    Views:
    17
    Teachers and educators in mathematics try to uncover the background of the mistakes their students make for their own and their students' benefit. Doing this they can improve their teaching qualities, and help the cognitive development of their pupils. However, this improvement does not always support their students with learning disorders, since their problem is not caused by wrong attitude or lack of diligence. Therefore, it is the interest of a conscientious teacher to recognize whether the weaker performance of a student is caused by learning disorders, so the helping teacher can give useful advices. Although the teacher is not entirely responsible for the diagnosis, but (s)he should be be familiar with the possible symptoms in order to make suggestions whether or not to take the necessary test of the learning disorders.
    In this article, through examining a test and the answer sheet of a single student, I show some signs that might be caused by learning disorders.
  • The influence of computer on examining trigonometric functions
    111-123
    Views:
    25
    In this paper the influence of computer on examining trigonometric functions was analyzed throughout the results questionnaire. The students, as usual, had to examine two trigonometric functions, both were given with the appropriate instructions. Three groups were tested. Two of those three groups were prepared with the help of computer and the third one was taught without computer. From the analysis of the questionnaire it follows that the computer has a great influence on understanding of the connections between the graph and very complex calculations.
  • Darstellungen und Vorstellungen und ihre Bedeutung für eine wirksame Metakognition beim Problemlösen und Begründen
    195-220
    Views:
    27
    Metacognition has one of the highest effect sizes concerning successful learning. However metacognitive activities during task solving and problem solving are not directly obvious. But they can appear by writing someone's thoughts down. The following analysis, which focusses on the level of argumentation as well as on the way of derivation, shows that the quality of representation is an essential condition for the possibility of metacognition.
  • Task reformulation as a practical tool for formation of electronic digest of tasks
    1-27
    Views:
    34
    Creative thinking as well as thinking itself is being developed at active learning-cognitive activity of students. To make mathematic matter a subject of interest and work of students at classes, it is efficacious to submit it in a form of tasks. The tasks may be set up in a purposeful system of tasks by means of which reaching the teaching goals in the sense of quality and durability of gained knowledge may be more effective. A suitable means for presentation of tasks with their characteristics (as e.g. didactic function and cognitive level) as well as task systems themselves is an electronic digest of tasks as a database. The analysis of textbooks and digests of tasks commonly used at schools in Slovakia shows that they do not include all the types of tasks necessary for setting up complete (in the sense of didactic functions) task systems. One of the most important methods used for formation of the missing tasks is reformulation of tasks. The individual strategies of task reformulation are explained in details on examples in this article.
  • Online tests in Comprehensive Exams – during and after the pandemic
    77-93
    Views:
    82

    The Covid-19 pandemic accelerated the development of electronic (e-learning) assessment methods and forced their use worldwide. Many instructors and students had to familiarize themselves with the form of distance education. During and since Covid-19 in Hungary, at the Faculty of Engineering of the University of Debrecen, the written part of the Comprehensive Exam in Mathematics is organized in a computer lab of the university using an online test. Our goal is that the results of the tests may be as reliable as possible in terms of measuring the students’ knowledge, and thus the grades given based on the test results would be realistic. In this paper, we show the analysis of a sample written exam and compare the real exam results of students who were prepared for the comprehensive exam during Covid-19 and who have participated in face-to-face education since then. The tools provided by the Moodle system necessary for comparison are also presented.

    Subject Classification: 97D40, 97D70, 97U50

  • Herschel's heritage and today's technology integration: a postulated parallel
    419-430
    Views:
    26
    During the early 20th century, advocacy of a range of mathematical technologies played a central part in movements for the reform of mathematical education which emphasised ‘practical mathematics' and the ‘mathematical laboratory'. However, as these movements faltered, few of the associated technologies were able to gain and maintain a place in school mathematics. One conspicuous exception was a technology, originally championed by the mathematician Herschel, which successfully permeated the school mathematics curriculum because of its:
    • Disciplinary congruence with influential contemporary trends in mathematics.
    • External currency in wider mathematical practice beyond the school.
    • Adoptive facility of incorporation in classroom practice and curricular activity.
    • Educational advantage of perceived benefits outweighing costs and concerns.
    An analogous perspective is applied to the situation of new technologies in school mathematics in the early 21st century. At a general level, the cases of calculators and computers are contrasted. At a more specific level, the educational prospects of CAS and DGS are assessed.
  • "On the way" to the function concept - experiences of a teaching experiment
    17-39
    Views:
    80

    Knowing, comprehending and applying the function concept is essential not only from the aspect of dealing with mathematics but with several scientific fields such as engineering. Since most mathematical notions cannot be acquired in one step (Vinner, 1983) the development of the function concept is a long process, either. One of the goals of the process is evolving an "ideal" concept image (the image is interrelated with the definition of the concept). Such concept image plays an important role in solving problems of engineering. This study reports on the beginning of a research aiming the scholastic forming of the students' function concept image i.e. on the experiences of a "pilot" study. By the experiment, we are looking for the answer of the following question: how can the analysis of such function relations be built into the studied period (8th grade) of the evolving process of the function concept that students meet in everyday life and also in engineering life?

    Subject Classification: D43, U73

  • The Project Method and investigation in school mathematics
    241-255
    Views:
    40
    The Project Method (PM) is becoming more common in the teaching of mathematics. Most of the time, Project Method means solving open and relatively wide formulated problems for the application of particular mathematical topics and the solving of everyday life problems.
    At present many experts in the theory of teaching mathematics advocate teaching activities as the characteristic for most mathematical work in the classroom. Thus, there is a question: whether it is possible or eventual desirable to use the PM for solving genuine mathematical problems. This paper deals with this question and discusses the connection between the PM and investigation of new mathematical knowledge for students. Our experience has shown that the PM in connection with investigations can be a useful and effective approach to teaching mathematics.
  • Über die sogenannte Regel von de l’Hospital im Mathematikunterricht
    193-208
    Views:
    7
    The aim of this paper is to provide an insight into the problems of the socalled indeterminate expressions, in order to make the students understand them better. The paper deals with the conditions and the proof of the theorem about the limit of a quotient of certain functions of one variable, usually named after l'Hospital. The question is of some interest, since the formulation of the result in several textbooks often appears redundant and the proof is more complex than necessary. First, the historical background is briefly sketched. Second, the theorem is formulated and justified, where three different, simple proof techniques are presented. Finally, possible applications are suggested for teaching, which are usually not treated in this problem area.