Search

Published After
Published Before

Search Results

  • Review of research on salt-affected soils in the Debrecen agricultural high educational institutions, with special focus on the mapping of Hortobágy
    471-484
    Views:
    65

    The history of the research of Debrecen scholars on salt-affected soils of Hortobágy and the region is very rich and diverse. 
    Focusing on mapping, the following stages can be distinguished, indicating the completeness of the maps and the purpose of the performed work
    − First, quantitative maps (Arany, 1926) for the utilization of the lands at 1:75,000 (Figure 1).
    − Second, quantitative map (Kreybig, 1943) for the utilization of the lands at 1:25,000.
    − Third, category map (Kreybig et al., 1935) testing the suitability of the classification system at  :75,000.
    − Fourth, partial category map (Szabolcs, 1954), showing the reasons of unsuccessful management at 1:10,000.
    − Fifth, partial quantitative map (Csillag et al., 1996), showing the utility of digital sampling at 1:25,000.
    − Sixth, partial quantitative map (Tamás and Lénárt, 2006), showing the capacity of multispectral  remote imagery at 1:100.
    − Seventh, partial quantitative map (Douaik et al., 2006), showing the usefulness of geostatistical  mapping at 1:10,000.
    − Eight, national quantitative maps (Pásztor et al., 2016), showing the applicability of geostatistics for administrative purposes at 1:10,000.
    − Ninth, partial quantitative/category map (authors, 2019), finding the optimal methods at 1:10,000.

  • Soil biological challenges in our age
    193-196
    Views:
    117

    The paper deals with the soil biological research and its contribution to the changed cropping strategy and to the sustainable and environmentally friendly farming and management. The paper emphasizes the importance of biodiversity, as one of the most important ecological functions of soil. The organisms, populations and communities living in the soil play a key importance in the preservation of soil fertility. The most important research areas are presented dealing with in the last decades the national researchers and the challenges we face regarding the current soil biological problems. We have to prepare to examine the soil biological effectiveness of the more widely spread bio-preparations, bacterium preparations, and bioregulators. The prerequisites are the versatile knowledge of the biological state of soils and monitoring examination of the different effects soils had (including the mentioned preparations).

  • Comparative analysis of certain soil microbiological characteristics of the carbon cycle
    137-141
    Views:
    128

    In our researches, we examine the soil microbial parameters related to the carbon cycle. In this study, we compare the changes of microbial biomass carbon (MBC) and the soil CO2 production in soil samples which were taken in spring and autumn. The 30 years old long-term experiment of Debrecen-Látókép is continued in our experiments. The long-term fertilization experiment was set in 1983, and our sample was taken in spring 2014. The examinations of soil respiration processes and factors that influence soil respiration are required in optimal management. In our study, we interested to know how the growing levels of fertilization influence the soil respiration and microbial biomass carbon under non-irrigated and irrigated conditions in maize mono, bi, and triculture.

  • The effect of sulphur and nitrogen supply on the growth and nutrient content of spring wheat (Triticum aestivum L.)
    65-70
    Views:
    194
    Sulphur is an essential element for plants. Decreasing sulphur deposition from the air, and the use of more concentrated phosphate fertilizers, which contain no sulphur, has led to reports of sulphur deficiencies for wheat. Sulphur deficiency significantly affects yield and also the quality of wheat. The pot experiment was set up on calcareous chernozem soil at Látókép, Hungary, test plant was spring wheat (Triticum aestivum L). Seven treatments were used where nitrogen and sulphur were supplied as soil fertilizers in increasing rates (NS1, NS2, NS3) and in foliar fertilizer as well (NS1+fol., NS2+fol., NS3+fol.). Plant aboveground biomass production was determined in samples taken in the stages of development BBCH 29-30, 51-59, 61-69, 89. The nitrogen and sulphur content of straw and grain were measured. N/S ratios of grain and straw were calculated. The weights of grain were ranging between 8.6–16.1 g/pot. NS2 and NS2+fol. treatments produced the highest values. Foliar fertilizer had no further effect on grain. Analysing the values of the straw, it was observed that tendencies were similar to values of grain. The NS2 treatment produced the highest weight of straw and the NS3 rate already decreased that amount. The obtained results show the unfavourable effect of excessively high rate applied in NS3 treatment. The supplementary foliar fertilizer had no significant influence on the weight of straw. Both N and S-uptake of plant was very intensive at the stem elongation stage, then the N and S-content of plant continuously decreased in time in all treatments. The N-content of grain ranged between 2.215–2.838%.
    The N-content of grain slightly increased with increasing of nitrogen doses. In the higher doses (NS2, NS3) foliar fertilization slightly increased the nitrogen content of grain, although this effect was not statistically proved. The N-content of straw varied from 0.361 to 0.605%. The growing dose of soil fertilizer also considerably increased the nitrogen content of straw. Foliar fertilization further increased the nitrogen content of straw. The S-content of grain ranged between 0.174–0.266%. The lowest fertilizer dose (NS1) significantly increased the sulphur content of grain. The further increasing fertilizer doses (NS2, NS3) did not cause additional enhance in sulphur content of grain.
    The foliar fertilizer also did not change the sulphur value of plant. The increasing amount of soil fertilizer and the supplementary foliar fertilizer had no effect on the sulphur content of straw. The treatments influenced the N/S ratios of grain and straw. On the basis of experimental results it can be concluded that the examined nitrogen and sulphur containing soil fertilizer had positive effect on the growth and yield of spring wheat grown on the calcareous chernozem soil. The soil fertilizer application enhanced the grain nitrogen and sulphur content. The highest rate of fertilizer (600 kg ha-1) proved to have decreasing effect on the yield. The sulphur and nitrogen containing foliar fertilizer did not have significant effect on the yield parameters but slightly increased the nitrogen content of plant.
  • Daily soil carbon dioxide flux under different tillage conditions
    141-144
    Views:
    158

    Over the last few years, warming of the atmospheric layer near Earth's surface is increasingly experienced and researchers have also established that concentration of numerous greenhouse gases have risen over the past two centuries value. Change is basically a legitimate process - considering atmospheric concentration as well - but the change experienced during the past centuries could not have become this critical without the contribution of human activity. Due to the nature of the greenhouse effect, the result of a very fragile, complex process is experienced currently on Earth, which can be significantly unbalanced even by a slight change. Carbon dioxide emitted from the soil is involved in the global cycle and has an impact on the greenhouse effect. The rise in soil respiration may result in the further intensification of warming. In the scope of the present study, it was examined how carbon dioxide emissions of the soil evolve over a day. The results have been established based on the comparison of the effects of different parts of the day, tillage methods and irrigation.

  • Evaluating of soil sulphur forms changes in long-term field experiments of Látókép
    71-76
    Views:
    152

    The aim of this work was to evaluate the changes of different sulphur forms (soluble, adsorbed) in chernozem soil in a long-term field experiment supplied with increasing doses of NPK fertilizers for a long time. In addition, other objective of this study included the examination of the applicability of recommended extractants of the different sulphate fraction in Hungarian soils. A long-term field experiment was established at the Research Station of Látókép of the University of Debrecen in 1984. In addition to control, two levels of NPK fertilizer doses have been used with irrigated and non-irrigated variants. Winter wheat and corn were cropped in a crop rotation on plots. Soil samples were collected in three different development stages of winter wheat, at the stage of stem elongation (April), flowering (May) and ripening (June of 2018) from the topsoil (0–20 cm) of experiment plots. Water-soluble inorganic sulphate was extracted with 0.01M CaCl2 solutions. The soluble plus adsorbed sulphate was extracted with 0.016M KH2PO4 solution. Sulphate was measured by turbidimetric method. 0.01M CaCl2-SO42— ranged between 0.293–1.896 mg kg-1 and the 0.016 M KH2PO4-SO42- varied between 5.087–10.261 mg kg-1. The values of KH2PO4 SO42- was higher than that of CaCl2-SO42-, because KH2PO4 extracted the adsorbed and soluble fractions of sulphate, while CaCl2 extracted the soluble sulphate fraction. The amount of absorbed sulphate was calculated by the differences of KH2PO4- SO4 and CaCl2-SO4. The KH2PO4 characterizes mainly the adsorbed sulphate fraction much more than the water-soluble fraction. KCl is the most widely used extractant for the determination of plant available sulphate content of soil in Hungary; therefore, KCl-SO42- fraction also was determined. The KCl-SO42- ranged between 0.328–2.152 mg kg-1. The CaCl2-SO42- and KCl-SO42- fractions were compared and based on Pearson's linear correlation, moderate correlation was established (r=0.511) between them. In all three extractant (0.01M CaCl2, 1M KCl, 0.016 M KH2PO4) higher sulphate fractions were measured in the fertilized plots where superphosphate had been supplied for ages until 2010. The arylsulphatase activity of soil also was determined and ranged between 9.284 and 26.860 µg p-nitrophenol g-1 h-1. The lowest value was observed in the treatment with highest NPK2 dose, both in irrigated and non-irrigated areas.

  • Examination the effects of different herbicides on the soil microorganisms of a calcareous chernozem
    121-126
    Views:
    74

    Pesticides play a key role in fighting weeds, pests and parasitic fungi. According to surveys, pests reduce the yield of agricultural crops by 35% worldwide. Pests, fungi and weeds account for 14%, 12% and 9% yield loss, respectively (Gáborjányi et al., 1995). Chemicals have contributed to increasing and maintaining the yields of crop production for decades. Today, agricultural production (in spite of many efforts) is unthinkable without the use of pesticides (herbicides, insecticides and fungicides). On the other hand, these chemicals contribute to the pollution of the atmosphere, surface and underground waters, and agricultural soils, especially if they are applied improperly.
    The sustainable agricultural production pays attention to environment-friendly cultivation-technologies; but at the same time it makes an effort to produce good quality and economical products. The examination of the herbicides’ secondary effects, fits into this chain of idas namely, how the herbicides affect – stimulating or inhibiting – the soil microbiological processes, prevention of soil fertility.
    In the course of the experimental work the effect of herbicides on soil biological properties were examined in different maize (Zea mays) cultures. We wanted wished to know that how the herbicides affect the quantity change of soil microorganisms, the life of different physiological groups of bacteria and the activity of microorganisms. A small pot experiment was set up in 2008 with the application of two herbicides - Acenit A 880 EC and Merlin 480 SC – in the breeding house of the Department. The moisture content and nutrient supply were at optimal level in the experiment.
    On the basis of results the following can be stated: 
    1. It can be stated that the two herbicides and all their doses affected negatively the number of total soil bacteria, the
    inhibiting effects were significant. The quantity of microscopical fungi increased by the effect of Merlin 480 SC and decreased in the treatments of Acenit A 880 EC.
    2. The Acenit A 880 EC had stimulating effect on the nitrate mobilization. The CO2-production was stimulated by the basic doses of herbicides; the other treatments did not influence the CO2-production significantly.
    3. The quantity of microbial biomass-carbon –except for only one treatment- decreased significantly by the effect of herbicides. Besides it, the quantity of microbial biomass-nitrogen increased significantly in the treatments of Acenit A 880 EC.
    4. The biomass of test plant decreased in the treatments of herbicides, their quantities were smaller than in the control. In the pots treated by Merlin 480 SC, parallel with the increase of doses decreased the quantity of plant-biomass.

  • The importance of predator species in the population dynamics of the Brown hares (Lepus europaeus, Pallas 1778) – Literature review
    43-49
    Views:
    174

    One of the conditions for successful small game management is the good management of predator species. The predator species play an important role in the sustainable utilization of the domestic brown hare populations. A portion of these species are under nature protection and with the rest of the species can be utilizing by the wildlife management professionals. Important prey species of brown hares: perspective are red fox, domestic dog and domestic cat. Based on latest date of the National Game Management Database in hunting bags increasing every year the number of the European badger, the stone marten and the golden jackal. In Hungary the brown hare’s most important predator bird species are common buzzard, marsh-harries and goshawk. The human race is not only as a top predator affects the number of the population of brown hares with the wildlife management but indirectly with traffic, (soil cultivation, mowing, and pest control) as well. The control of predators is absolutely necessary for successful small game management, but without sufficient habitat size and habitat development it is hardly sufficient.

  • Evaluation of striptillage and conventional tillage in maize production
    37-40
    Views:
    156

    Tillage changes soil properties and the way how the environment affects those properties. Soil properties and environment determine the rate of water movement in liquid and gaseous form into and out of soil. Based on the experimental database of the Institute of Land Utilisation, Regional Development and Technology of the University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management and the KITE PLC, various cultivation systems were examined with maize (Zea mays L.) as indicator plant in Jász-Nagykun-Szolnok county. The sample area can be found in the outskirts of Kenderes on a meadow chernozem soil. On the examined plot, strip-tillage, subsoiling and moldboard ploughing were performed, each on 4.5 ha, respectively. The purpose of the present study is to compare these cultivation systems according to the soil- and maize kernel moisture content and to the yield based on the years of 2012 and 2013.

  • Effect of different sources and doses of sulphur on yield, nutrient content and uptake by spring wheat
    109-115
    Views:
    127

    The objective of this study was to investigate the effect of two sulphur forms (sulphate and tiosulphate) in combination with three different N:S ratios on the yield of spring wheat and total N- and S-content and uptake by the aboveground biomass on chernozem and sandy soil. In the greenhouse experiment, the effects of two sulphur forms were compared: sulphate (SO42-) and thiosulphate (S2O32-). The sulphate was applied as potassium-sulphate (K2SO4) and thiosulphate as ammonium-thiosulphate ((NH4)2S2O3). Increasing doses of both sulphur forms (24, 60, 120 kg S ha-1) were used with the same nitrogen dose (120 kg N ha-1) which caused three different N:S ratios background (1:0.2, 1:0.5, 1:1). Nitrogen was supplied in the form of monoammonium-phosphate (MAP), ammonium-nitrate and ammonium-thiosulphate. Plant samples were taken in three different development stages of spring wheat based on the BBCH scale: at the stage of BBCH 30–32 (stem elongation), BBCH 65–69 (flowering) and BBCH 89 (ripening). The total nitrogen and total sulphur content of plant at different development stages and also wheat grain were measured by Elementar Vario EL type CNS analyser. The nutrient uptake by plant and grain was calculated from the yield of spring wheat and the N and S content of plant.  The grain yield on chernozem soil ranged between 6.31 and 12.13 g/pot. All fertilised treatments significantly increased the grain yield compared to the control. The highest yield was obtained in the case of the application of 120 kg N ha-1 and 60 kg S ha-1in sulphate form. The grain yield on sandy soil varied from 2.53 to 6.62 g/pot. The fertilised treatments significantly enhanced the yield compared to the control. The highest yield was observed in the case of the application of 120 kg N ha-1 and 60 kg S ha-1 in thiosulphate form. On chernozem soil the increasing doses of sulphur (24, 60, 120 kg S ha-1) with the same N dose (120 kg N ha-1) increased the N-content of spring wheat at all development stages and in the grain. The treatments with different sulphur sources did not cause further changes in the N-content. On sandy soil in the most cases the N-content did not change significantly as a result of increasing sulphur doses. The treatments with sulphate form basically resulted higher nitrogen-content than treatments with thiosulphate form. The treatments with increasing sulphur doses resulted higher S-content on both of chernozem and sandy soil in the case of all development stage. Comparing the effect of the applied sulphur sources on the S-content it can be stated that at the stage of BBCH 30–31 and 65–69 the treatments with sulphate form resulted higher sulphur-content. At the stage of BBCH 89 there was no significant differences in S-content of grain as a result of different sulphur-sources.

  • SIM Samples Investigation by Statistical Methods
    194-197
    Views:
    60

    The assessment of the present condition of the soil is very important, because the accession of the number of the European Union members is in the near future. This can be the base of the modern agrarian environmental management programme. The assessment must be objective, detailed and analyse the processes in the soil.
    Respecting the above causes was decided to create an Environmental Information Monitoring System. This system consists of more parts. One of them is the Soil Information Monitoring System (SIM). This system started to work in 1992.
    This system has two functions. Creating and actuation is obligatory from the international contracts, on the other hand the public SIM has very important role in the conservation of the soil.
    The SIM territorial measuring grid consists of 1236 measuring points. These points are representatives. The distributions of the points by the types of soil attend the variety of the types of soil of the country.
    The investigated elements in 6 types of soil were in our experiment (the group of scandium and the lanthanide series elements). There are 6 elements above the detection limit (Gadolinium, Neodymium, Praseodymium, Scandium, Samarium, Yttrium).
    The Neodymium concentration is 2 times higher than the content of Gadolinium and Yttrium.
    The Neodymium concentration is 4 times higher than the content of Praseodymium, Scandium and Samarium.
    In the case of Dysprosium, Europium, Lutetium, Terbium, Ytterbium the concentrations were below 1 mg/kg.

  • The influence of fertilization on the soil characteristics of a calcareous chernozem in a long term experiment
    47-52
    Views:
    76

    In the long term fertilization experiment of the University of Debrecen, Centre for Agricultural and Applied Economic Science(CAAEC) (Debrecen Látókép), the effects of a 25-year-long fertilization were examined in terms of some chemical and microbiological properties of soil. With the growing doses of fertilizers, the available nutrient content of soil increased. At the same time the pH significantly decreased, while the hidden acidity increased. Moreover, the ratio between the soil bacteria and microscopic fungi, and the occurrence of microbes also changed. The number of sensitive physiological bacteria groups decreased dramatically. These changes indicate the reactions of living organisms; they correspond to the „resistance stage” of stress effects, but in the case of nitrifying bacteria, they reach the „exhaustion stage”.

  • Correlation analysis of relative chlorophyll content and yield of maize hybrids of different genotypes
    211-214
    Views:
    103

    In 2021, correlation between relative chlorophyll content and yield in three maize hybrids of different genotypes was examined. The data were collected at the Látókép Experimental Station of the University of Debrecen located on the Hajdúság loess ridge in Hungary. The soil of the small plot field strip plot trial, which was set up in 2011, was calcareous chernozem. Apart from the control treatment (without fertilisation), N fertiliser is applied in the form of base and top dressing. The base fertiliser containing 60 and 120 kg ha-1 N of nutrient applied in spring was followed by top dressing containing +30–30 kg ha-1 N in V6 and V12 phenophases. SPAD values measured at different phenological stages of the growing season increased by an average of about 28% up to 10 leaf stage for all three hybrids. In the pre-silking period (Vn), the relative chlorophyll content decreased by 8% on average. After an average increase of 14% in the tasselling and silking period, SPAD decreased by an average of about 29% at full maturity (R6).

    For the different fertiliser treatments, higher N doses resulted in higher yields. In the basal fertiliser treatment, the A 60 N dose resulted in an average 34% increase in yield, and the A 120 N dose resulted in an average 94% increase in yield compared to the control. The 60 kg ha-1 N basal fertiliser (A60) increased in the V6 phenophase with an additional 30 kg ha-1 N resulted in an average yield increase of 26%. When 120 kg ha-1 N of basal fertiliser (A120) was increased by an additional 30 kg ha-1 N in the V6 phenophase, only the Merida hybrid showed a significant yield increase (7%). No further yield increase was observed when V690 and V6150 treatments were increased by an additional 30 kg ha-1 N in the V12 phenophase. The yield of the Armagnac hybrid decreased by almost 20%, the yield of Fornad by 3% and the yield of Merida by 1%.

  • Impact of tillage systems on maize emergence
    129-136
    Views:
    30

    In Europe, there has been a significant change in the way tillage is approached in recent years. This change is due to a growing awareness among farmers, politicians and society as a whole that soil is not a renewable resource in itself. From an agricultural point of view, the greatest impact on soil condition can be achieved through the use of the applied tillage systems.  My research takes this approach as a basis when examining the different tillage systems and their impact on the environment. In this context, conventional and a variety of no-tillage systems are examined in this paper. As a next step, it is examined how the environmental conditions created by the different tillage systems influence the emergence of maize hybrids. The analyses are carried out in a multi-factorial, long-term tillage field experiment. The same batch of the same hybrid seed was sown in several crop years, and the effects of environmental conditions on the emergence process were examined. Environmental effects and emergence-related uptake were measured in the examined plots. Measurements of environmental effects included air temperature, precipitation, soil temperature measured at seeding depth, as well as % cover of stem residue on the surface in the treated plots. The first emergence time measurements of the sown crop in the plots of each treatment were compared and relationships between these factors were investigated.

  • Study of factors controlling the amount of 0.01 M CaCl2 extractable Norg fraction
    437-449
    Views:
    181
    The use of new methods describing the “readily available” nutrient content of the soil is spreading on a global scale. The 0.01 M CaCl2 extractant is a dilute salt solution in which the easily soluble inorganic (nitrate-N and ammonium-N) and organic N fractions, P, K and micronutrients are also measurable. The 0.01 M CaCl2 has been tested in the University of Debrecen, Institute of Agricultural Chemistry and Soil Sciences since the 90’s. The results of the researches related to organic N fraction, performed in the last decades, and the results of the present study (originating from the long-term experiment of Karcag, 2007–2009) can be concluded as follows:
    The measurement of easily soluble and oxidizable organic nitrogen (Norg), besides inorganic fractions, could improve the nutrient management.
    The amount of the Norg fraction is determined by the soil conditions, therefore it is considered to be a site-specific parameter.
    Management practices and cropyear affect the amount of Norg as well. The present research confirmed that, the effect of fertilization on the amount of Norg can be explained by the changing of the yield (related to total biomass production), while the effect of cropyear is related to the differences in mineralization circumstances and yield as well.
    The measurement of the Norg fraction is increases the accuracy of N-supply, therefore it could prevent the environmentally harmful excess N application as well.
  • Effects of soil cultivation and environmental changes on maize yield
    97-100
    Views:
    126

    We evaluated the relationships among soil cultivation and other agrotechnical factors (fertilization, number of plants and hybrid) within the framework of a multifactorial long-term experiment set at the Látókép Experimental Site of the Centre for Agricultural Sciences of the University of Debrecen in mid-heavy chalcareous chernozem soil based on a long-term experiment conducted for a 5-year period (2002–2006).

    Based on the evaluation of soil cultivation by the average of treatments, it may be assessed that spring ploughing (8.204 t ha-1) provides more favourable conditions to the stand compared to spring shallow cultivation; however, this did not result in a significant difference. Spring ploughing considerably increased the yield of hybrid FAO 300 in dry years, whereas it considerably increased the yield of hybrid FAO 400 in favourable crop years. A stand of 70 thousand stems/ha provided the higher yield result in both soil cultivation types. It was sufficient to use a fertilizer dose of 120 kg N ha-1 for economical production.

  • Impact of nitrogen and sulphur fertilization on the growth and micronutrient content of spring wheat (Triticum aestivum L.)
    211-219
    Views:
    166

    Micronutrients are as important as macronutrients for crops. Each micronutrient has its own function in plant growth. Zinc is important for membrane integrity and phytochrome activities. Copper is an essential micronutrient required for the growth of wheat. Manganese is required for enzyme activation, in electron transport, and in disease resistance. The pot experiment was set up in greenhouse on calcareous chernozem soil Debrecen-Látókép with a spring wheat. In certain development stages (according to BBCH growth scale of wheat), at the beginning of stem elongation (29–30), at the heading (51–59), at the flowering (61–69) stage three average plants were removed from all pots for analysis. Fresh and dry weight of the plant samples were measured. Plant leaves after drying were digested by HNO3-H2O2 methods and manganese, zinc and copper contents of plant were quantified by atomic absorption spectrophotometry. At the flowering stage, when the nutrient uptake of plants is the most intensive, the weight of wheat ranged between 0.94–1.57 g plant-1. In this development stage, the NS2 treatment produced the highest weight of wheat, and compared to this the NS3 treatment decreased that value already. The results show unfavourable effect of NS3 treatment. On the basis of microelement content of wheat and the weight of a plant, nutrient uptake by plant were calculated. At the beginning of growth the starter treatment had positive effect on Cu-uptake compared to the NS1 treatment, where the same dose of fertilizer was stirred into the soil. Wheat is very sensitive to copper deficiency, so copper dissolved by starter treatment could be favourable to the early development of wheat. At flowering stage the Zn-uptake of wheat became the highest and it was between 133.7–234.6 mg plant-1. The Mn-uptake of wheat plant was higher than the Cu- and Zn-uptake of wheat.

    This phenomenon can be explained by the fact that the untreated soil had higher Mn-content, than Cu- and Zn-content. To summarize the results, it can be stated, that the copper uptake of wheat was more affected by the different treatments in the stage of stem elongation, while Mn- and Zn-uptake of wheat were influenced primarily in the stage of heading and flowering.

  • Mathematical modelling of surface irrigation for field crops in Jordan based on soil hydrological-physical properties
    137-148
    Views:
    88

    Jordan suffers from drought and depletion of water resources. In-field crop management, the issue of irrigation scheduling is important and influential. In this research note, a simple method was developed for scheduling surface irrigation of field crops based on inputs of crop ecology, effective root depth, soil texture, soil hydrology, and logical mathematics. It was concluded that the science of mathematics has succeeded to meet academic irrigation scheduling in terms of surface irrigation for field crops based on both soil hydrological and physical traits. Extension scholar has a decision to choose mathematical irrigation model depends on the traditional inputs or updating the model by searching for renewable inputs such as different varieties root depths, optimum row spacing of each crop, drip irrigation mathematical modelling, and digital sensing. In both cases, the input related to the effective root depth is a major and basic factor in mathematical irrigation scheduling. It is, therefore, recommendable that extension research-based systems should focus on basic mathematics to capacitate the complementary role of academics, research, and extension in irrigation modelling, and rural development.

  • Soil Fertility Management in Westsik’s Crop Rotation Experiment
    34-39
    Views:
    93

    The crop rotation experiment, established by Vilmos Westsik in 1929, is the best known and most remarkable example of continuous production in Hungary. It is still used to study the effects of organic manure treatment, develop models and predict the likely effects of different cropping systems on soil properties and crop yields. Westsik’s crop rotation experiment provides data of immediate value to farmers concerning the applications of fertilisers, green, straw and farmyard manure. The experiment also provides a resource of yield, plant and soil data sets for scientific research into the soil and plant processes which control soil fertility, and into the sustainability of production without environmental deterioration. The maintenance of Westsik’s crop rotation experiment can be used to illustrate the value of long-term field experiments.

  • The aggregate stability of the soil in respect to the uniform aggregate stability indicator
    83-99
    Views:
    86

    Soil structure and its quality are fundamental properties because they control many processes in soils. Tillage, crop and other factors influence soil structure. Efficient protection of it needs indication of changes in soil structure. A new Normalized Stability Index proposed by Six et al. (2000) tries to evaluate these changes, which was compared with some former used indices. The most common method (wet sieving) was modified to reduce the confounding effects of different particle size distribution of different soil types and method used to the investigation. Changes in soil structure caused by tillage and crop management therefore have been made quantitative and comparable. In this paper, we review the new method and Normalized Stability Index proposed by Six et al. (2000) and present the results of our investigations.

  • Effects of different groundcover matters on nutrient availability in an integrated apple orchard in Eastern-Hungary
    21-25
    Views:
    77

    The aim of our study is to examine the effects of different groundcover methods on nutrient availability and uptake of apple orchard. The
    experiment was carried out at the orchard of TEDEJ Rt. at Hajdúnánás-Tedej, in Eastern Hungary. The orchard was set up on lowland chernozem soil in the Nyírség region. It was established in the autumn of 1999, using Idared cultivar grafted on MM106 rootstocks at a spacing of 3.8 x 1.1 m.
    The applied treatments were divided into two groups according to origins and effects. On the one hand, different livestock manures (cow,
    horse and pig), on the other hand different mulch-matters (straw, pine bark mulch, black foil) were used. The different manures and mulches
    were applied on the surface to test the effectiveness of these materials.
    The effectiveness of manure treatments was higher than the other treatments on AL soluble P content of soil. Mostly the manure treatments
    increased the AL soluble K of soil. Our all treatments increased 0.01 M CaCl2 soluble NO3 - -N content of the examined soil layers. The effect
    of manure treatments was the highest. From the results it was evident that the amount of easily soluble organic nitrogen fraction distributed
    more homogeneously than the other mineral N fractions examined.
    Our results can be summarized as follows:
    1. Our results pointed out that the used ground covering matters divided into several categories regarding its effect.
    2. The available N, P and K contents of soil were mostly increased by applying manures.
    3. The effectiveness of straw, mulch and mostly black foil was lower.
    4. Differences were found between nutrient supplying treatments and the treatments which did not supply nutrients.

  • Establishing regional cultivating districts on the basis of the Kreybig practical soil mapping system
    20-25
    Views:
    87

    With the help of this report evaluating the current situation of the region, characteristics of the development in agricultural production and regional differences can be clarified. By mapping out the regional soil, land use and climatic conditions and organizing these into a geographical information system, one can easily determine which plants are the most ideal to cultivate in that particular region. Moreover, it is a useful tool that enables us to
    establish the most favorable land use structure suited to ecological demands and also helps to determine the methods of soil protection.
    During our work, we chose administrative units in Szabolcs-Szatmár-Bereg County, based on the latest aspects of regional cultivation.
    Our pilot areas are: the small regions of Nyíregyháza, Nyírbátor, Nagykálló, Mátészalka and Csenger.
    Using the database, we separated and uncovered the soil conditions of the pilot areas: the chemical and physical properties of the soil layer which is exploited by the roots of the plants, the humus content, the nutrient supply, the thickness of the cultivated layer and the water management conditions.
    We separated the districts of regional cultivation, where the basic elements of the traditional Kreybig color systems were applied (light yellow, dark yellow, light brown, dark green, blue, pink, red, gray, greenish brown, reddish purple, light purple, dark purple, light green).
    By using the data collected from the pilot areas, we compiled a map database, which is suitable to illustrate the plant cultivating characteristics of the region. We made recommendations to determine the most favorable plants to cultivate in the specific region with the given meteorological and soil conditions, as well as for the shifting of crops.
    Our recommendations were also illustrated in a map with a resolution of 1:25000. 

  • Supplementary botanical examinations for modelling the grass production of the great pasture of Hajdúbagos
    17-21
    Views:
    59

    Our botanical survey at the great pasture of Hajdúbagos is a part of a broad research that aims to predict the production of the grass at the given area. As the mentioned pasture is a nature conservation area, the usage of artificial fertilizers or other classic grassland management methods in its handling are prohibited. Thus grazing is an important tool for the management of this area, however the not suitably regulated grazing order and the poorly calculated carrying capacity cause serious problems at some parts of the pasture. The prediction of the grass yield is essential to
    avoid both over- and both under-grazing and for determining the optimal number of the grazing animal stock and the grazing method, thus the most suitable management strategy.
    The potential grass yield is easily calculable with a computer model that will be established as a basis for determining the grass production. For the sake of getting an accurate view of the plant associations of the pasture, we created examination quadrates and determined all plant species found in the quadrates. After plant determination, we compiled a coenological table in which we marked besides the scientific name and families, the life forms of each species that refer to the structure, morphology and thus the adaptability of plants to their environment. We determined the
    TWR, so the thermoclimate, water and soil reaction values, the nature conservation values, as well as the covering values of each plant species (DB), and the total coverage of the examination quadrates (B%).
    According to the covering values, grasses proved to be characteristic plants at the examined pasture, thus we need to consider them influential in calculating the animal carrying capacity and with the rest of the information, we need to supply the model.
    The life forms and TWR indicators, all together with the nature conservation values provide further important data to the development of the management suggestion of the protected pasture. By examining these values to different parts of the area, we could get an exact view on the measure of the degradation effects. This promotes the determination of grazing methods and the forming of the boundaries of certain pasture sections, to avoid  those harmful anthropogenic effects that seriously endanger this extensive sandy pasture. 

  • Evaluation of chickpea (Cicer arietinum L.) in response to salinity stress
    105-110
    Views:
    203

    Soil salinity is a severe and expanding soil degradation problem that affects 80 million ha of arable lands globally. Chickpea (Cicer arietinum L.) is very sensitive to saline conditions; the most susceptible genotypes may die in just 25 mM NaCl in hydroponics. Approximately 8–10% yield loss in chickpea production is estimated due to salinity stress. However, it is still not established why chickpea is so susceptible to salt affection. Salinity (NaCl) impedes germination of seeds, though chickpea varieties considerably differ from one another in this respect. Some chickpea genotypes are more tolerant in the stage of germination, tolerating even 320 mM NaCl. The reasons of this variation are unrevealed; there is a shortage of knowledge about the germination abilities of chickpea genotypes in saline conditions. Nevertheless, the effect of salt stress on vegetative growth can be analysed in hydroponics, in pot or field conditions, regardless the experimental environment, the ranking of genotypes regarding salt resistance is coherent. Chickpea genotypes can be different in their ability to retain water, maybe under salt affection; the more salt tolerant lines can maintain higher water content in the shoots, while the more sensitive ones cannot. The identification of salt tolerant chickpea landraces based on developing genetic variability is a suitable strategy to combat against salinity problems arising in arid and semi-arid areas.

  • Examinations of the carbon dioxide emission of the soil in the case of different tillage methods in a field experiment
    209-212
    Views:
    209
    Today's global challenge is the increasing concentration of carbon dioxide (CO2) and other greenhouse gases in the air. The level of CO2 emissions may be significantly affected by the agriculture and, more specifically, the applied tillage method, even though to a lesser extent than industrial production. On a global scale, the CO2 emission of an agricultural area is insignificant in comparison to that of a large-scale plant in an area of the same size, but areas under cultivation, including arable land, have a large global area. In this paper, we investigated the relationship between applied soil tillage methods and carbon dioxide emissions in the case of different fertiliser treatments. In our experiment we examined four types of tillage with five different fertiliser effects. Comparing fertiliser treatments and tillage methods, it was found that their interaction significantly affected carbon dioxide emissions, the lowest value was obtained in the case of the 210 l ha-1 Nitrosol+N-LOCK – tillage radish treatment. Strip and tillage radish methods have relatively homogeneous, low value.