Search

Published After
Published Before

Search Results

  • The potential of biological control on invasive weed species
    73-75
    Views:
    41

    Sorghum halepense is one of the invasive species in Europe. This study was made to identify the morphology of fungi on invasive weed species samples on the roots of Sorghum halepense. The samples were collected in the region of Debrecen. The experiment was conducted under laboratory conditions to determine the microscopic form of fungi. The samples were put on PDA and for identification of fungi is based on the morphological characteristics of the features and colonies of conidia that were developed in Petri dishes.

    The examination of the culture revealed that the fungus from the root of Sorghum halepense was Aspergillus niger. Pathogenicity and the relationship between the fungus and Sorghum halepense are still uncertain so in the future pathogenicity tests and re-isolations from plants are very important steps.

  • Screening of paprika (Capsicum annuum L.) varieties resistant to NaCl salt stress
    105-110
    Views:
    112

    Salinity stress is one of the environmental factors that negatively affect the growth and production of pepper plants. The 100 seeds' weight was measured. The total fresh weight of five seedlings and the growth rate of one seedling of three paprika varieties were also measured under the influence of NaCl at a salinity level threshold of (3 dS m‑1). The proportion of tissue water content in three pepper cultivars was measured according to a mathematical formula at the end of the experiment. In terms of seed weight, the (Carma) cultivar outperformed other types greatly. Except for the superiority of both (Carma, and Bobita F1) over (Fokusz) variety in total fresh seedlings weight under sodium chloride as abiotic stress, there are no significant differences in the total seedlings' dry weight and the rate of seedling growth. The non-drought-resistant type (Bobita F1) loses water the fastest, at 89.61%, compared to drought-tolerant kinds, which lose water at a slower rate (Carma, and Fokusz). The results demonstrate the (Carma) variety's numerical vigor, particularly in the growth rate. More testing is needed to determine the selection of varieties that are resistant to abiotic and biotic stresses.

  • Preliminary test: Evaluation and selection of tomato (Lycopersicon esculentum Mill.) varieties resistant to drought and powdery mildew
    33-37
    Views:
    117

    Powdery mildew (Leveillula taurica) and (Oidium neolycopersici) are two harmful fungi that invade the tomato (Lycopersicon esculentum Mill.) plant and grow in dry conditions. Under the influence of polyethylene glycol 6000 at a concentration of 12%, the total seedlings fresh weight, total seedlings dry weight, seedling growth rate of one seedling, seedling length, and tissue water content percentage for three tomato varieties were assessed. Despite the superiority of the (Mobil) tomato variety in terms of numerical values, the results revealed no significant differences between varieties. As a result, (Mobil) has greater vigor under environmental drought stress of lower osmotic stress than other tomato varieties. More work is required to evaluate the research selection of varieties resistant to biotic stresses in dry areas, such as powdery mildew disease.

  • Mathematical modelling of surface irrigation for field crops in Jordan based on soil hydrological-physical properties
    137-148
    Views:
    87

    Jordan suffers from drought and depletion of water resources. In-field crop management, the issue of irrigation scheduling is important and influential. In this research note, a simple method was developed for scheduling surface irrigation of field crops based on inputs of crop ecology, effective root depth, soil texture, soil hydrology, and logical mathematics. It was concluded that the science of mathematics has succeeded to meet academic irrigation scheduling in terms of surface irrigation for field crops based on both soil hydrological and physical traits. Extension scholar has a decision to choose mathematical irrigation model depends on the traditional inputs or updating the model by searching for renewable inputs such as different varieties root depths, optimum row spacing of each crop, drip irrigation mathematical modelling, and digital sensing. In both cases, the input related to the effective root depth is a major and basic factor in mathematical irrigation scheduling. It is, therefore, recommendable that extension research-based systems should focus on basic mathematics to capacitate the complementary role of academics, research, and extension in irrigation modelling, and rural development.