Articles

Biological potential of plant pathogenic fungi on weeds: A mini-review essay

Published:
2024-06-03
Authors
View
Keywords
License

Copyright (c) 2024 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Kabashi, B., Massimi, M., & Radócz, L. (2024). Biological potential of plant pathogenic fungi on weeds: A mini-review essay. Acta Agraria Debreceniensis, 1, 59-66. https://doi.org/10.34101/actaagrar/1/12000
Abstract

The invasion of weeds into productive areas has substantial negative effects on native ecosystems as well as agricultural production systems globally. Consequently, the task of maintaining or restoring these systems will become increasingly challenging without consistent, ongoing management efforts. The intensifying emergence of herbicide resistance in numerous weed species, coupled with the unintended pollution caused by synthetic herbicides, underscores the growing necessity for alternative, environmentally friendly, and sustainable management techniques, such as the utilisation of bioherbicides. Plant pathogenic microbes play an important role in biologically management of weeds, with the utilization of plant pathogenic fungi emerging as a promising area of study for novel research trends aimed at weed management without reliance of herbicides and to mitigate environmental pollution. A potential solution to decreasing pesticide usage involves the development of bioherbicides containing fungal active ingredients. Among the most commonly utilised fungi in bioherbicides are genera like Alternaria, Colletotrichum, Cercospora, Fusarium, Phomopsis, Phytophthora, Phoma, and Puccinia. Increased weed resistance to herbicides has influenced new strategies for weed management, with some fungi from genera such as Colletotrichum and Phoma already employed for weed control. Nonetheless, it is evident from reviews that further research is imperative in this domain, with particular emphasis on analysing the efficacy of each plant pathogenic fungi.

References
  1. Abu‐Dieyeh, M.H.; WATSON, A.K. (2007): Efficacy of Sclerotinia minor for dandelion control: effect of dandelion accession, age and grass competition. Weed research, 47(1), 63–72. https://doi.org/10.1111/j.1365-3180.2007.00542.x
  2. Bailey, K.L. (2014): The bioherbicide approach to weed control using plant pathogens. In Integrated Pest Management (pp. 245–266). Academic Press. https://doi.org/10.1016/B978-0-12-398529-3.00014-2
  3. Bailey, K.L.; Boyetchko, S.M.; Längle, T.J.B.C. (2010): Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biological Control, 52(3), 221–229. https://doi.org/10.1016/j.biocontrol.2009.05.00
  4. Barton, J. (2004): How good are we at predicting the field host-range of fungal pathogens used for classical biological control of weeds? Biological Control, 31(1), 99–122. https://doi.org/10.1016/j.biocontrol.2004.04.008
  5. Beck, K.G.; Zimmerman, K.; Schardt, J.D.; Stone, J.; Lukens, R.R.; Reichard, S.; Thompson, J.P. (2008): Invasive species defined in a policy context: Recommendations from the Federal Invasive Species Advisory Committee. Invasive Plant Science and Management, 1(4), 414–421. https://doi.org/10.1614/IPSM-08-089.1
  6. Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014). The plant microbiome and its importance for plant and human health. Frontiers in microbiology, 111795. https://doi.org/10.3389/fmicb.2014.00491
  7. Berestetskiy, A.; Gagkaeva, T.Y.; Gannibal, P.B.; Gasich, E.L.; Kungurtseva, O.V.; Mitina, G.V.; Levitin, M.M. (2005): Evaluation of fungal pathogens for biocontrol of Cirsium arvense. In Management Aspects of Crop Protection and Sustainable Agriculture: Research, Development and Information Systems. pp. 136–138.
  8. Bordin, E.R.; Frumi Camargo, A.; Stefanski, F.S.; Scapini, T.; Bonatto, C.; Zanivan, J.; ... & Treichel, H. (2021). Current production of bioherbicides: Mechanisms of action and technical and scientific challenges to improve food and environmental security. Biocatalysis and Biotransformation, 39(5), 346–359. https://doi.org/10.1080/10242422.2020.1833864
  9. Boyetchko, S.M.; Bailey, K.L.; Hynes, R.K.; Peng, G.; Vincent, C.; Goettel, M.S.; Lazarovits, G. (2007): Biological Control: A Global Perspective.
  10. Boyette, C.D.; Hoagland, R.E.; Stetina, K.C. (2019): Extending the host range of the bioherbicidal fungus Colletotrichum gloeosporioides f. sp. aeschynomene. Biocontrol science and technology, 29(7), 720–726. https://doi.org/10.1080/09583157.2019.1581130
  11. Bowers, R.C. (1986): Commercialization of Collego™ An Industrialist's View. Weed Science, 34(S1), 24–25. https://doi.org/10.1017/S0043174500068326
  12. Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; Ver Loren van Themaat, E.; Schulze-Lefert, P. (2013): Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838. https://doi.org/10.1146/annurev-arplant-050312-120106
  13. Chakraborty, A.; Ray, P. (2021): Mycoherbicides for the Noxious Meddlesome: Can Colletotrichum be a Budding Candidate? Frontiers in Microbiology, 12, 754048. https://doi.org/10.3389/fmicb.2021.754048
  14. Charudattan, R. (2001): Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl, 46, 229–260.
  15. Charudattan, R.; Dinoor, A. (2000): Biological control of weeds using plant pathogens: accomplishments and limitations. Crop Protection, 19(8–10), 691–695. https://doi.org/10.1016/S0261-2194(00)00092-2
  16. Chauhan, B.S. (2020): Grand challenges in weed management. Frontiers in Agronomy, 1, 3. https://doi.org/10.3389/fagro.2019.00003
  17. Christian, N.; Herre, E.A.; Mejia, L.C.; Clay, K. (2017): Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proc. Biol. Sci. 284. https://doi.org/10.1098/rspb.2017.0641, 1858
  18. Cimmino, A.; Andolfi, A.; Zonno, M.C.; Avolio, F.; Santini, A.; Tuzi, A.; Evidente, A. (2013): Chenopodolin: a phytotoxic unrearranged ent-pimaradiene diterpene produced by Phoma chenopodicola, a fungal pathogen for Chenopodium album biocontrol. Journal of natural products, 76(7), 1291–1297. https://doi.org/10.1021/np400218z
  19. Cordeau, S.; Triolet, M.; Wayman, S.; Steinberg, C.; Guillemin, J.P. (2016): Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop protection, 87 44–49. https://doi.org/10.1016/j.cropro.2016.04.016
  20. Dumas, M.T.; Wood, J.E.; Mitchell, E.G.; Boyonoski, N.W. (1997): Control of Stump Sprouting of Populus tremuloides and P. grandidentata by Inoculation with Chondrostereum purpureum. Biological Control, 10(1), 37–41. https://doi.org/10.1006/bcon.1997.0507
  21. Duke, S.O.; Lydon, J. (1987): Herbicides from natural compounds. Weed technology, 1(2), 122–128. https://doi.org/10.1017/S0890037X00029304
  22. Evidente, A.; Cimmino, A.; Andolfi, A.; Vurro, M.; Zonno, M.C.; Motta, A. (2008): Phyllostoxin and phyllostin, bioactive metabolites produced by Phyllosticta cirsii, a potential mycoherbicide for Cirsium arvense biocontrol. Journal of agricultural and food chemistry, 56(3), 884–888. https://doi.org/10.1021/jf0731301
  23. Evidente, M.; Cimmino, A.; Zonno, M.C.; Masi, M.; Berestetskyi, A.; Santoro, E.; Evidente, A. (2015): Phytotoxins produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album. Phytochemistry, 117, 482–488. https://doi.org/10.1016/j.phytochem.2015.07.008
  24. Félix-Gastélum, R.; Valdez-Leyva, A.B.; Fierro-Coronado, R.A.; Maldonado-Mendoza, I E. (2021): First report of stem blight and leaf spot in horse purslane caused by Gibbago trianthemae in Sinaloa, Mexico. Canadian Journal of Plant Pathology, 43(3), 431–438. https://doi.org/10.1080/07060661.2020.1829063
  25. Gadermaier, G.; Hauser, M.; Ferreira, F. (2014): Allergens of weed pollen: an overview on recombinant and natural molecules. Method, 66, 55–66. https://doi.org/10.1016/j.ymeth.2013.06.014
  26. Ghorbani, R.; Leifert, C.; Seel, W. (2005): Biological control of weeds with antagonistic plant pathogens. Advances in Agronomy, 86, 191–225. https://doi.org/10.1016/S0065-2113(05)86004-3
  27. Graupner, P.R.; Carr, A.; Clancy, E.; Gilbert, J.; Bailey, K.L.; Derby, J.A.; Gerwick, B.C. (2003): The Macrocidins: Novel Cyclic Tetramic Acids with Herbicidal Activity Produced by Phoma macrostoma. Journal of Natural Products, 66(12), 1558–1561. https://doi.org/10.1021/np030193e
  28. Gu, Q.; Chu, S.; Huang, Q.; Chen, A.; Li, L.; Li, R. (2023): Colletotrichum Echinochloae: A Potential Bioherbicide Agent for Control of Barnyardgrass (Echinochloa Crus-Galli (L.) Beauv.). Plants, 12(3), 421. https://doi.org/10.3390/plants12030421
  29. Hasan, S.; Ayres, P.G. (1990). The control of weeds through fungi; principles and prospects. New Phytologist, 115(2), 201–222. https://doi.org/10.1111/j.1469-8137.1990.tb00447.x
  30. Heap, I. (2021): The International Survey of Herbicide Resistant Weeds: Weeds Resistant to EPSP Synthase Inhibitors. 2015, http://weedscience.org/ (4 April 2024, date last accessed).
  31. Hershenhorn, J.; Casella, F.; Vurro, M. (2016): Weed biocontrol with fungi: past, present and future. In: Biocontrol Sci Techn, vol 26, pp 1313–1328. https://doi.org/10.1080/09583157.2016.1209161
  32. Hinz, H.L.; Schwarzländer, M.; Gassmann, A.; Bourchier, R.S. (2014): Successes we may not have had: a retrospective analysis of selected weed biological control agents in the United States. Invasive Plant Science and Management, 7(4), 565–579.
  33. Hintz, W. (2007): Development of Chondrostereum purpureum as a mycoherbicide for deciduous brush control. Biological control: a Global perspective. CAB International, 284–290.
  34. Hoagland, R.E.; Boyette, C.D.; Stetina, K.C. (2023): Bioherbicidal Activity of Albifimbria verrucaria (Formerly Myrothecium verrucaria) on Glyphosate-Resistant Conyza canadensis. Journal of Fungi, 9(7), 773. https://doi.org/10.3390/jof9070773
  35. Hoagland, R.E.; Boyette, C.D.; Weaver, M.A.; Abbas, H.K. (2007): Bioherbicides: research and risks. Toxin Reviews, 26(4), 313–342. https://doi.org/10.1080/15569540701603991
  36. Hoagland, R.E. (1990): Microbes and microbial products as herbicides: an overview. Doi:10.1021/bk-1990-0439.ch001
  37. Hoagland, R.E.; Weaver, M.A.; Boyette, C.D. (2007): Myrothecium verrucaria fungus: a bioherbicide and strategies to reduce its non-target risks. Allelopathy Journal, 19(1 ): 179–192.
  38. Hynes, R.K. (2018): Phoma macrostoma: As a broad spectrum bioherbicide for turfgrass and agricultural applications. CABI Rev., 13, 1–9. https://doi.org/10.1079/PAVSNNR201813005
  39. Iffat, S.; Rukhsana, B.; Arshad, J. (2010): Field Evaluation of Alternaria alternata as Mycoherbicide for the Management of Rumex dentatus L. Philippine Agricultural Scientist, 93(1), 116–120.
  40. Jayawardena, R.S.; Li, X.H.; Liu, M.; Zhang, W.; Yan, J.Y. (2016): Mycosphere essay 16: Colletotrichum: biological control, biocatalyst, secondary metabolites and toxins. Mycosphere, 7(8), 1164–1176. Doi 10.5943/mycosphere/si/2c/7
  41. Johanson, D.R.; Wyse, D.L.; Janes, K.J. (2003): Controlling weeds phytopathogen. Weed Tech, 10, 621–624.
  42. Julien, M.H.; Griffiths, M.W. (1998): Biological Control of Weeds. A World Catalogue of Agents and Their Target Weeds, fourth ed.CAB International, Wallingford, UK.
  43. Júnior, F.W.R.; Scariot, M.A.; Forte, C.T.; Pandolfi, L; Dil, J.M.; Weirich, S.; Mossi, A.J. (2019): New perspectives for weeds control using autochthonous fungi with selective bioherbicide potential. Heliyon, 5(5), e01676. https://doi.org/10.1016/j.heliyon.2019.e01676
  44. Kadir, J.B.; Charudattan, R.; Stall, W.M.; Brecke, B.J. (2000): Field efficacy of Dactylaria higginsii as a bioherbicide for the control of purple nutsedge (Cyperus rotundus). Weed technology, 14(1), 16. https://doi.org/10.1614/0890037X(2000)014[0001:FEODHA2.0.CO;2
  45. Kadioğlu, I.; Karamanli, N.; Yanar, Y. (2010): Determination of fungal pathogens of common weed species in the vicinity of Tok at, Turkey. Communications in agricultural and applied biological sciences, 75(2), 97–105.
  46. Kakhaki, S.H.N.; Montazeri, M.; Naseri, B. (2017): Biocontrol of broomrape using Fusarium oxysporum f. sp. orthoceras in tomato crops under field conditions. Biocontrol Sci. Technol. 27, 1435–1444. https://doi.org/10.1080/09583157.2017.1409338
  47. Kenney, D.S. (1986): DeVine®—the way it was developed—an industrialist's view. Weed Science, 34(S1), 15–16. https://doi.org/10.1017/S0043174500068302
  48. Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Barka, E.A. (2022): Biological control of plant pathogens: A global perspective. Microorganisms, 10(3), 596. https://doi.org/10.3390/microorganisms10030596
  49. Li, Y.; Sun, Z.; Zhuang, X.; Xu, L.; Chen, S.; Li, M. (2003): Research progress on microbial herbicides. Crop Protection, 22(2), 247–252. https://doi.org/10.1016/S0261-2194(02)00189-8
  50. Mazur, S.; Kurzavinska, H.; Nadziakiewicz, M.; Nawrocki, J. (2015): Redroot pigweed as a host for Alternaria alternata–the causal agent of Alternaria leaf blight in potato. Zemdirbyste, 102(1), 115–118. DOI 10.13080/z-a.2015.102.015
  51. McFadyen, R.E.C. (1998). Biological control of weeds. Annual review of entomology, 43(1), 369–393. https://doi.org/10.1146/annurev.ento.43.1.369
  52. Mira, Y.; Castañeda, D.; Morales, J.; Patiño, L. (2021): Phytopathogenic fungi with potential as biocontrol agents for weeds of importance in crops of Antioquia, Colombia. Egyptian Journal of Biological Pest Control, 31(1), 1–14.
  53. Montagu, M.V. (2019). The future of plant biotechnology in a globalized and environmentally endangered world. Genetics and Molecular Biology, 43. https://doi.org/10.1590/1678-4685-GMB-2019-0040
  54. Motlagh, M.R.S. (2012). Evaluation of Alternaria alternata causing leaf spot of barnyardgrass grown in rice fields. Afr. J. Microbiol. Res, 6(21), 4481–4488.
  55. Mohammad, R.S.M. (2011): Identification of new fungi isolated from Echinochloa spp., as potential biological control agents in paddy fields in Iran. Scientific Research and Essays, 6(3), 567–574. DOI: 10.5897/SRE10.813
  56. Morin, L. (2020): Progress in biological control of weeds with plant pathogens. Annual review of phytopathology, 58, 201–223. https://doi.org/10.1146/annurev-phyto-010820-012823
  57. Nandhini, C.; Ganesh, P.; Yoganathan, K.; Kumar, D. (2019): Efficacy of Colletotrichum gloeosporioides, potential fungi for bio control of Echinochloa crus-galli (Barnyard grass). Journal of Drug Delivery and Therapeutics, 9(6-s), 72–75. https://doi.org/10.22270/jddt.v9i6-s.3751
  58. Nguyen, C.; Chemin, A.; Vincent, C. (2013): VVH 86 086, nouveau defanant desicant naturel affet herbicide. In: 22nd Conference du Columa. Journees Internationale sur la lutte les Mauvaises Herbes, Dijon, France, pp. 953–962.
  59. Oerke, E.C. (2006): Crop losses to pests. J. Agric. Sci. 144, 31–43. https://doi.org/10.1017/S0021859605005708
  60. Pacanoski, Z. (2015): Bioherbicides. In Herbicides, Physiology of Action, and Safety. IntechOpen: London, UK, 2015; Chapter 11; pp. 245–276.
  61. Quereshi, S.; Khan, N.A.; Pandey, A.K. (2011): Anthraquinone pigment with herbicidal potential from Phoma herbarum FGCC#54. Chem. Nat. Comp. 47, 521–523. doi: 10.1007/s10600-011-9986-1
  62. Qu, R.Y.; He, B.; Yang, J.F.; Lin, H.Y.; Yang, W.C.; Wu, Q.Y.; ... & Yang, G.F. (2021): Where are the new herbicides? Pest Management Science, 77(6), 2620–2625. https://doi.org/10.1002/ps.6285
  63. Radócz, L. (2013): Integrated plant protection. University of Debrecen, University Press.pp. 123.
  64. Rai, M.; Zimowska, B.; Shinde, S.; Tres, M.V. (2021): Bioherbicidal potential of different species of Phoma: opportunities and challenges. Applied Microbiology and Biotechnology, 105(8), 3009–3018.
  65. Ray, P.; Vijayachandran, L.S. (2013): Evaluation of indigenous fungal pathogens from horse purslane (Trianthema portulacastrum) for their relative virulence and host range assessments to select a potential mycoherbicidal agent. Weed science, 61(4), 580–585. https://doi.org/10.1614/WS-D-12-00076.1
  66. Schwarzländer, M.; Hinz, H.L.; Winston, R.L.; Day, M.D. (2018): Biological control of weeds: an analysis of introductions, rates of establishment and estimates of success, worldwide. BioControl, 63, 319–331.
  67. Shahrtash, M.; Brown, S.P. (2020): Drivers of foliar fungal endophytic communities of kudzu (Pueraria montana var. lobata) in the Southeast united states. Diversity, 12(5), 185. https://doi.org/10.3390/d12050185
  68. Shahzad, M.; Farooq, M.; Hussain, M. (2016b): Weed spectrum in different wheat-based cropping systems under conservation and conventional tillage practices in Punjab, Pakistan. Soil and Tillage Research, 163:71–79. https://doi.org/10.1016/j.still.2016.05.012
  69. Shahzad, M.; Farooq, M.; Jabran, K.; Hussain, M. (2016a): Impact of different crop rotations and tillage systems on weed infestation and productivity of bread wheat. Crop protection, 89, 161–169. https://doi.org/10.1016/j.cropro.2016.07.019
  70. Stewart-Wade, S.M.; Neumann, S.; Collins, L.L.; Boland, G.J. (2002): The biology of Canadian weeds. 117. Taraxacum officinale GH Weber ex Wiggers. Canadian Journal of plant science, 82(4), 825–853. https://doi.org/10.4141/P01-010
  71. Tateno, A. (2000): Herbicidal composition for the control of annual bluegrass. US Patent No 6162763A.
  72. Te Beest, D.O.; Yang, X.B.; Cisar, C.R. (1992): The status of biological control of weeds with fungal pathogens. Annual Review of Phytopathology, 30(1), 637–657. https://doi.org/10.1146/annurev.py.30.090192.003225
  73. Tehranchian, P.; Adair, R.J.; Lawrie, A.C. (2014): Potential for biological control of the weed Angled Onion (Allium triquetrum) by the fungus Stromatinia cepivora in Australia. Australasian Plant Pathology, 43(4), 381–392.
  74. Triolet, M.; Guillemin, J.P.; Andre, O.; Steinberg, C. (2019): Fungal-based bioherbicides for weed control: a myth or a reality? Weed Research, 60(1), 60–77. https://doi.org/10.1111/wre.12389
  75. Todero, I.; Confortin, T.C.; Luft, L.; Brun, T.; Ugalde, G.A.; de Almeida, T.C.; Mazutti, M.A. (2018): Formulation of a bioherbicide with metabolites from Phoma sp. Scientia Horticulturae, 241, 285–292. https://doi.org/10.1016/j.scienta.2018.07.009
  76. Vilà, M.; Williamson, M.; Lonsdale, M. (2004): Competition experiments on alien weeds with crops: lessons for measuring plant invasion impact? Biol. Invasions 6:59–69.
  77. Weaver, M.A.; Hoagland, R.E.; Boyette, C.D.; Brown, S.P. (2021): Taxonomic evaluation of a bioherbicidal isolate of Albifimbria verrucaria, formerly Myrothecium verrucaria. Journal of Fungi, 7(9), 694. https://doi.org/10.3390/jof7090694
  78. Wilson, C.L. (1969): Use of plant pathogens in weed control. Annual Review of Phytopathology, 7(1), 411–434. https://doi.org/10.1146/annurev.py.07.090169.002211
  79. Yandoc-Ables, C.B.; Rosskopf, E.N.; Charudattan, R. (2007): Plant pathogens at work: Progress and possibilities for weed biocontrol classical versus bioherbicidal approach. Plant Health Progress, 8(1), 32. https://doi.org/10.1094/PHP-2007-0822-01-RV
  80. Zeng, P. (2020): Bio-Herbicides: Global Development Status and Product Inventory. Agro News Markets Companies Products Regulations Science & Research Viewpoint & Interview.
  81. Zhu, H.; Ma, Y.; Guo, Q.; Xu, B. (2020): Biological weed control using Trichoderma polysporum strain HZ-31. Crop protection, 134, 105161. https://doi.org/10.1016/j.cropro.2020.105161
  82. Zimdahl, R.L. (2011): Biological weed control. In: Fundamentals of Weed Science, 3rd Edn. 327–355. Academic Press, San Diego, CA